Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 86(5): 153, 1-14, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22321830

RESUMO

In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.


Assuntos
Moléculas de Adesão Celular/fisiologia , Conexinas/fisiologia , Folículo Ovariano/fisiologia , Junções Aderentes/fisiologia , Junções Aderentes/ultraestrutura , Animais , Cálcio/fisiologia , Moléculas de Adesão Celular/ultraestrutura , Conexinas/ultraestrutura , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Feminino , Junções Comunicantes/fisiologia , Junções Comunicantes/ultraestrutura , Camundongos , Folículo Ovariano/ultraestrutura , Junções Íntimas/fisiologia , Junções Íntimas/ultraestrutura
2.
Magn Reson Med ; 68(2): 369-77, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22161549

RESUMO

This study aimed to characterize changes in lipid saturation using magnetic resonance spectroscopy of sensitive (HeLa) and resistant (C33A; Me180) cervical cancer cell lines following exposure to paclitaxel to explore lipid profiles as biomarkers of drug resistance. Spectra were acquired at 11.74 T. Flow cytometry, electron, and confocal microscopy assessed cellular morphology. Western blots assessed cytoplasmic phospholipase A(2) , fatty acid synthase, and acyl-CoA synthetase1 expression. After 24 h of paclitaxel exposure, >60% of cells showed mitotic arrest. At 48 h, HeLa cells showed apoptosis while C33A/Me180 cells showed normal morphology indicating resistance. MR-visible lipids increased significantly in all lines at 24 h with further increases at 48 h; resistant lines showed smaller increases than HeLa. Cytoplasmic phospholipase A(2) and fatty acid synthase levels were unchanged at 24 h and dropped at 48 h in HeLa; acyl-CoA synthetase1 was higher in Me180/C33A than in HeLa controls but did not increase significantly. The percentage of cells displaying lipid droplets increased significantly at 24 and 48 h in all lines; droplet size increased only in HeLa cells. Droplet number was >3-4× greater in apoptotic compared with mitotic-arrested cells. Apoptotic cells accumulate unsaturated fatty acids in large (relative to control) droplets; resistant lines accumulated smaller droplets with less triglycerides.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Lipídeos/análise , Espectroscopia de Ressonância Magnética/métodos , Mitose/efeitos dos fármacos , Paclitaxel/administração & dosagem , Biomarcadores Tumorais/análise , Feminino , Células HeLa , Humanos
3.
Biochem J ; 434(1): 49-60, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21118154

RESUMO

LKB1 is a 'master' protein kinase implicated in the regulation of metabolism, cell proliferation, cell polarity and tumorigenesis. However, the long-term role of LKB1 in hepatic function is unknown. In the present study, it is shown that hepatic LKB1 plays a key role in liver cellular architecture and metabolism. We report that liver-specific deletion of LKB1 in mice leads to defective canaliculi and bile duct formation, causing impaired bile acid clearance and subsequent accumulation of bile acids in serum and liver. Concomitant with this, it was found that the majority of BSEP (bile salt export pump) was retained in intracellular pools rather than localized to the canalicular membrane in hepatocytes from LLKB1KO (liver-specific Lkb1-knockout) mice. Together, these changes resulted in toxic accumulation of bile salts, reduced liver function and failure to thrive. Additionally, circulating LDL (low-density lipoprotein)-cholesterol and non-esterified cholesterol levels were increased in LLKB1KO mice with an associated alteration in red blood cell morphology and development of hyperbilirubinaemia. These results indicate that LKB1 plays a critical role in bile acid homoeostasis and that lack of LKB1 in the liver results in cholestasis. These findings indicate a novel key role for LKB1 in the development of hepatic morphology and membrane targeting of canalicular proteins.


Assuntos
Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/patologia , Canalículos Biliares/fisiologia , Fígado/anatomia & histologia , Fígado/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Envelhecimento , Animais , Transporte Biológico/fisiologia , Membrana Celular , Colesterol/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
4.
Biol Cell ; 101(8): 481-93, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19236310

RESUMO

BACKGROUND INFORMATION: The endometrial epithelial cell membrane is a key interface in female reproductive biology. Steroid hormones play a predominant role in cyclic changes which occur at this interface during the female menstrual cycle. Specific changes in the morphology of the endometrial epithelial cell surface become apparent with the epithelial transition that drives the switch from a non-receptive to receptive surface due to the action of progesterone on an oestrogen primed tissue. AFM (atomic force microscopy) allows the high-resolution characterization of the endometrial epithelial cell surface. Its contact probe mechanism enables a unique imaging method that requires little sample preparation, yielding topographical and morphological characterization. By stiffening the cell membrane, low concentrations of fixatives allow the surface detail of the cell to be resolved while preserving fine ultra-structural details for analysis. RESULTS: In the present study we use high resolution AFM analysis of endometrial epithelial cells to monitor the effect of progesterone on the nanoscale structure of the endometrial cell surface. High-resolution imaging reveals similar topographical nanoscale changes in both the Hec-1-A and Ishikawa model cell lines. Hec-1-B cells, used in the present study as a progesterone receptor negative control, however, exhibit a flattened cell surface morphology following progesterone treatment. Changes in average cell height and surface convolution correlate with increased surface roughness measurements, demonstrating alterations in molecular structure on the cell surface due to hormonal stimulation. CONCLUSIONS: Progesterone treatment induces changes to the cell surface as a result of nanoscale molecular modifications in response to external hormonal treatments. AFM provides the basis for the identification, visualization and quantification of these cell surface nanoscale changes. Together these findings demonstrate the utility of AFM for use in reproductive science and cancer biology where it could be applied in both in vitro analysis of protein structure-function relationships and clinical diagnosis.


Assuntos
Endométrio/química , Endométrio/metabolismo , Células Epiteliais/química , Células Epiteliais/metabolismo , Progesterona/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Endométrio/citologia , Células Epiteliais/citologia , Feminino , Humanos , Microscopia de Força Atômica
5.
Cell Metab ; 6(3): 236-45, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767910

RESUMO

Nuclear receptor signaling plays an important role in energy metabolism. In this study we demonstrate that the nuclear receptor corepressor RIP140 is a key regulator of metabolism in skeletal muscle. RIP140 is expressed in a fiber type-specific manner, and manipulation of its levels in null, heterozygous, and transgenic mice demonstrate that low levels promote while increased expression suppresses the formation of oxidative fibers. Expression profiling reveals global changes in the expression of genes implicated in both myofiber phenotype and metabolic functions. Genes involved in fatty-acid oxidation, oxidative phosphorylation, and mitochondrial biogenesis are upregulated in the absence of RIP140. Analysis of cultured myofibers demonstrates that the changes in expression are intrinsic to muscle cells and that nuclear receptor-regulated genes are direct targets for repression by RIP140. Therefore RIP140 is an important signaling factor in the regulation of skeletal muscle function and physiology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Consumo de Oxigênio , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Miosinas/metabolismo , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor Nuclear , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , PPAR delta/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
6.
Biochem Biophys Res Commun ; 292(1): 102-8, 2002 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-11890678

RESUMO

Scanning immunoelectron microscopy was applied to human endometrial epithelium for the first time to simultaneously determine epitope localisation and cellular architecture. The method was established using HMFG1, an antibody to a glycoform of the MUC1 mucin. This was chosen because of the potential importance of MUC1 in connection with endometrial receptivity. Biopsies of mid-secretory phase endometrium were labelled using HMFG1 and silver-enhanced, gold-conjugated secondary antibody was then visualised by back-scattered electron imaging. The method provided a highly specific localisation of the HMFG1 epitope to the ciliated and "ciliogenic" cells of the endometrial surface. In contrast, no reactivity was evident on the microvillous cells and endometrial pinopodes. The potential to integrate the study of the molecular and ultrastructural changes that occur in the endometrium by using scanning immunoelectron microscopy offers a powerful means of expanding our understanding of the adaptation of the endometrium in preparation for embryo implantation.


Assuntos
Endométrio/química , Endométrio/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Microscopia Imunoeletrônica/métodos , Mucina-1/imunologia , Adulto , Endométrio/fisiologia , Epitélio/química , Epitélio/ultraestrutura , Epitopos/análise , Feminino , Humanos , Ciclo Menstrual , Mucina-1/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA