Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(10): e0205491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321203

RESUMO

Robust preclinical testing is essential to predict clinical safety and efficacy and provide data to determine safe dose for first-in-man studies. There are a growing number of examples where the preclinical development of drugs failed to adequately predict clinical adverse events in part due to their assessment with inappropriate preclinical models. Preclinical investigations of T cell receptor (TCR)-based immunotherapies prove particularly challenging as these biologics are human-specific and thus the conventional testing in animal models is inadequate. As these molecules harness the full force of the immune system, and demonstrate tremendous potency, we set out to design a preclinical package that would ensure adequate evaluation of these therapeutics. Immune Mobilising Monoclonal TCR Against Cancer (ImmTAC) molecules are bi-specific biologics formed of an affinity-enhanced TCR fused to an anti-CD3 effector function. ImmTAC molecules are designed to activate human T lymphocytes and target peptides within the context of a human leukocyte antigen (HLA), thus require an intact human immune system and peptidome for suitable preclinical screening. Here we draw upon the preclinical testing of four ImmTAC molecules, including IMCgp100, the first ImmTAC molecule to reach the clinic, to present our comprehensive, informative and robust approach to in vitro preclinical efficacy and safety screening. This package comprises a broad range of cellular and molecular assays using human tissues and cultured cells to test efficacy, safety and specificity, and hence predict human responses in clinical trials. We propose that this entirely in vitro package offers a potential model to be applied to screening other TCR-based biologics.


Assuntos
Anticorpos Biespecíficos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas/farmacologia , Anticorpos de Cadeia Única/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Fluxo de Trabalho
2.
Pulm Circ ; 8(2): 2045894018768290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799315

RESUMO

Mitochondrial dysfunction within the pulmonary vessels has been shown to contribute to the pathology of idiopathic pulmonary arterial hypertension (IPAH). We investigated the hypothesis of whether impaired exercise capacity observed in IPAH patients is in part due to primary mitochondrial oxidative phosphorylation (OXPHOS) dysfunction in skeletal muscle. This could lead to potentially new avenues of treatment beyond targeting the pulmonary vessels. Nine clinically stable participants with IPAH underwent cardiopulmonary exercise testing, in vivo and in vitro assessment of mitochondrial function by 31P-magnetic resonance spectroscopy (31P-MRS) and laboratory muscle biopsy analysis. 31P-MRS showed abnormal skeletal muscle bioenergetics with prolonged recovery times of phosphocreatine and abnormal muscle pH handling. Histochemistry and quadruple immunofluorescence performed on muscle biopsies showed normal function and subunit protein abundance of the complexes within the OXPHOS system. Our findings suggest that there is no primary mitochondrial OXPHOS dysfunction but raises the possibility of impaired oxygen delivery to the mitochondria affecting skeletal muscle bioenergetics during exercise.

3.
Sci Rep ; 8(1): 1799, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379065

RESUMO

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Assuntos
DNA Mitocondrial/genética , Deleção de Sequência/genética , Diferenciação Celular/genética , Linhagem Celular , Células Clonais/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mutação Puntual/genética
4.
Immunology ; 152(3): 425-438, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28640942

RESUMO

The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-ß, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Melanoma/terapia , Proteínas/farmacologia , Anticorpos de Cadeia Única/farmacologia , Neoplasias Cutâneas/terapia , Antígeno gp100 de Melanoma/imunologia , Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Memória Imunológica/efeitos dos fármacos , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Fenótipo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Antígeno gp100 de Melanoma/metabolismo
5.
Nucleic Acids Res ; 44(11): 5313-29, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27131788

RESUMO

Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the mtDNA rearrangements in individual cells from patients with sporadic inclusion body myositis, a late-onset inflammatory myopathy with prominent mitochondrial changes. We identified large-scale mtDNA deletions in individual muscle fibres with 20% of cytochrome c oxidase-deficient myofibres accumulating two or more mtDNA deletions. The majority of deletions removed only the major arc but ∼10% of all deletions extended into the minor arc removing the origin of light strand replication (OL) and a variable number of genes. Some mtDNA molecules contained two deletion sites. Additionally, we found evidence of mitochondrial genome duplications allowing replication and clonal expansion of these complex rearranged molecules. The extended spectrum of mtDNA rearrangements in single cells provides insight into the process of clonal expansion which is fundamental to our understanding of the role of mtDNA mutations in ageing and disease.


Assuntos
DNA Mitocondrial , Rearranjo Gênico , Miosite de Corpos de Inclusão/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Biópsia , Criança , Feminino , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Miosite de Corpos de Inclusão/patologia , Deleção de Sequência , Adulto Jovem
6.
Liver Transpl ; 16(5): 567-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20440766

RESUMO

Loss of bile duct epithelium is characteristic of early chronic rejection following liver transplantation. Recent studies have suggested that intrahepatic biliary epithelial cells can transform into myofibroblasts. This study examines the induction and molecular regulation of this transition during allograft rejection. Immortalized human cholangiocytes were stimulated with either transforming growth factor beta1 (TGFbeta1) or a T cell line, and they were examined for morphological, proteomic, and functional features. Posttransplant liver biopsy sections were also examined. Treatment of cholangiocytes with TGFbeta1 or TGFbeta-presenting T cells induced a bipolar morphology, reduced expression of E-cadherin and zona occludens 1 (ZO-1), and increased vimentin, fibronectin, matrix metalloproteinase 2 (MMP-2), MMP-9, and S100 calcium binding protein A4 (S100A4); treated cells invaded a model basement membrane. Chemokines induced T cell penetration of 3-dimensional, cultured bile duct-like structures and bile ducts in liver biopsy sections. A spatial association was observed between duct-infiltrating T cells and cholangiocyte expression of mesenchymal markers, including S100A4. Inhibition of S100A4 expression in vitro blocked TGFbeta1-mediated loss of E-cadherin and ZO-1 but did not reduce induction of fibronectin, MMP-2, or MMP-9. This study demonstrates the potential for T cells to induce an intrahepatic biliary epithelial-to-mesenchymal cell transition during chronic rejection. Furthermore, S100A4 expression by cholangiocytes was identified as a crucial regulator of this transition.


Assuntos
Ductos Biliares/patologia , Células Epiteliais/patologia , Fibroblastos/patologia , Rejeição de Enxerto/patologia , Transplante de Fígado , Linfócitos T/patologia , Ductos Biliares/imunologia , Biópsia , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Transformada , Doença Crônica , Colágeno , Combinação de Medicamentos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Fibroblastos/imunologia , Técnicas de Silenciamento de Genes , Rejeição de Enxerto/imunologia , Humanos , Imuno-Histoquímica , Imunofenotipagem , Laminina , Proteoglicanas , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/genética , Linfócitos T/imunologia , Fator de Crescimento Transformador beta1/farmacologia , Transplante Homólogo
7.
Lab Invest ; 88(2): 112-23, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18059363

RESUMO

The relationship between bile duct damage and portal fibrosis in chronic liver diseases remains unclear. This study was designed to show whether human intrahepatic biliary epithelial cells can undergo epithelial-mesenchymal cell transition, thereby directly contributing to fibrogenesis. Primary human cholangiocytes were stimulated with transforming growth factor-beta (TGFbeta) or TGFbeta-presenting T cells and examined for evidence of transition to a mesenchymal phenotype. Liver sections were labelled to detect antigens associated with biliary epithelial cells (cytokeratin 7 and 19 and E-cadherin), T cells (CD8), epithelial-mesenchymal transition (S100A4, vimentin and matrix metalloproteinase-2 (MMP-2)), myofibroblasts (alpha-smooth muscle actin) and intracellular signal-transduction mediated by phosphorylated (p)Smad 2/3; in situ hybridisation was performed to detect mRNA encoding TGFbeta and S100A4. Stimulation of cultured cells with TGFbeta induced the expression of pSmad2/3, S100A4 and alpha-smooth muscle actin; these cells became highly motile. Although normal bile ducts expressed ALK5 (TGFbeta RI), low levels of TGFbeta mRNA and nuclear pSmad2/3, they did not express S100A4, vimentin or MMP-2. However, TGFbeta mRNA and nuclear pSmad2/3 were strongly expressed in damaged ducts, which also expressed S100A4, vimentin and MMP-2. Fibroblast-like cells which expressed S100A4 were present around many damaged bile ducts. Cells in the 'ductular reaction' expressed both epithelial and mesenchymal markers together with high levels of TGFbeta mRNA and pSmad2/3. In conclusion, the cells forming small- and medium-sized bile ducts and the ductular reaction undergo EMT during chronic liver diseases, resulting in the formation of invasive fibroblasts; this process may be driven by a response to local TGFbeta, possibly presented by infiltrating T cells.


Assuntos
Ductos Biliares Intra-Hepáticos/patologia , Colangite Esclerosante/patologia , Células Epiteliais/patologia , Cirrose Hepática Biliar/patologia , Linfócitos T/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Ductos Biliares Intra-Hepáticos/imunologia , Ductos Biliares Intra-Hepáticos/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Colangite Esclerosante/imunologia , Colangite Esclerosante/metabolismo , Colestase/imunologia , Colestase/metabolismo , Colestase/patologia , Doença Crônica , Células Epiteliais/fisiologia , Imunofluorescência , Humanos , Hibridização In Situ , Cirrose Hepática Biliar/imunologia , Cirrose Hepática Biliar/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA