Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116544, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838463

RESUMO

Benzyl butyl phthalate (BBP) is a widely used plasticizer that poses various potential health hazards. Although BBP has been extensively studied, the direct mechanism underlying its toxicity in male germ cells remains unclear. Therefore, we investigated BBP-mediated male germ cell toxicity in GC-1 spermatogonia (spg), a differentiated mouse male germ cell line. This study investigated the impact of BBP on reactive oxygen species (ROS) generation, apoptosis, and autophagy regulation, as well as potential protective measures against BBP-induced toxicity. A marked dose-dependent decrease in GC-1 spg cell proliferation was observed following treatment with BBP at 12.5 µM. Exposure to 50 µM BBP, approximating the IC50 of 53.9 µM, markedly increased cellular ROS generation and instigated apoptosis, as evidenced by augmented protein levels of both intrinsic and extrinsic apoptosis-related markers. An amount of 50 µM BBP induced marked upregulation of autophagy regulator proteins, p38 MAPK, and extracellular signal-regulated kinase and substantially downregulated the phosphorylation of key kinases involved in regulating cell proliferation, including phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase. The triple combination of N-acetylcysteine, parthenolide, and 3-methyladenine markedly restored cell proliferation, decreased BBP-induced apoptosis and autophagy, and restored mTOR phosphorylation. This study provides new insights into BBP-induced male germ cell toxicity and highlights the therapeutic potential of the triple inhibitors in mitigating BBP toxicity.


Assuntos
Acetilcisteína , Adenina , Apoptose , Autofagia , Proliferação de Células , Ácidos Ftálicos , Espécies Reativas de Oxigênio , Sesquiterpenos , Masculino , Animais , Camundongos , Ácidos Ftálicos/toxicidade , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/toxicidade , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Plastificantes/toxicidade , Espermatogônias/efeitos dos fármacos
2.
Environ Res ; 252(Pt 3): 119034, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701888

RESUMO

Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.


Assuntos
Compostos Benzidrílicos , Perfilação da Expressão Gênica , Músculo Esquelético , Fenóis , Compostos Benzidrílicos/toxicidade , Animais , Fenóis/toxicidade , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Transcriptoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL
3.
Environ Toxicol Pharmacol ; 108: 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759847

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.


Assuntos
Acetilcisteína , Autofagia , Proliferação de Células , Nanopartículas Metálicas , Espécies Reativas de Oxigênio , Titânio , Titânio/toxicidade , Masculino , Autofagia/efeitos dos fármacos , Animais , Acetilcisteína/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Espermatogônias/efeitos dos fármacos , Nanopartículas/toxicidade
4.
Food Chem Toxicol ; 188: 114652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583502

RESUMO

The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.


Assuntos
Acetilcisteína , Apoptose , Compostos Benzidrílicos , Proliferação de Células , Fenóis , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Masculino , Fenóis/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Acetilcisteína/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sesquiterpenos/farmacologia , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , NF-kappa B/metabolismo
5.
World J Mens Health ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38606862

RESUMO

PURPOSE: In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models. MATERIALS AND METHODS: SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis. RESULTS: BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis. CONCLUSIONS: Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.

6.
Anim Cells Syst (Seoul) ; 26(2): 70-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479511

RESUMO

Owing to their self-renewal and differentiation abilities, spermatogonial stem cells (SSCs) are essential for maintaining male fertility and species preservation through spermatogenesis. With an increase in exposure to plasticizers, the risk of endocrine-disrupting chemicals exerting mimetic effects on estrogen receptors, such as bisphenol A (BPA), has also increased. This has led to concerns regarding the preservation of male fertility. BPA impairs spermatogenesis and the maintenance of SSCs; however, the transcriptome differences caused by BPA in SSCs are poorly understood. Thus, this study aimed to investigate the transcriptome differences in SSCs exposed to BPA, using RNA sequencing (RNA-Seq) analysis. We found that cell proliferation and survival were suppressed by SSC exposure to BPA. Therefore, we investigated transcriptome differences through RNA-Seq, functional annotation, and gene set enrichment analysis. Our results showed repetitive and abundant terms related to two genes of lysosomal acidification and five genes of glycosaminoglycan degradation. Furthermore, we validated the transcriptome analyses by detecting mRNA and protein expression levels. The findings confirmed the discovery of differentially expressed genes (DEGs) and the mechanism of SSCs following exposure to BPA. Taken together, we expect that the identified DEGs and lysosomal mechanisms could provide new insights into the preservation of male fertility and related research.

7.
Andrology ; 10(2): 340-353, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34499811

RESUMO

BACKGROUND: Cryopreservation can expand the usefulness of spermatogonial stem cells (SSCs) in various fields. However, previous investigations that have attempted to modulate cryoinjury-induced mechanisms to increase cryoprotective efficiency have mainly focused on apoptosis and necrosis. OBJECTIVES: This study aimed to establish an effective molecular-based cryoprotectant for SSC cryopreservation via autophagy modulation. MATERIALS AND METHODS: To determine the efficacy of autophagy modulation, we assessed the recovery rate and relative proliferation rate and performed western blotting for the determination of autophagy flux, immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization, and spermatogonial transplantation for in vivo SSC functional activity. RESULTS: The results showed that a basal level of autophagy caused a higher relative proliferation rate (pifithrin-µ 0.01 µM, 184.2 ± 11.2%; 3-methyladenine 0.01 µM, 175.3 ± 10.3%; pifithrin-µ 0.01 µM + 3-methyladenine 0.01 µM, P3, 224.6 ± 22.3%) than the DMSO control (100 ± 6.2%). All treatment groups exhibited normal characteristics, suggesting that these modulators could be used as effective cryoprotectants without changing the properties of the undifferentiated germ cells. According to the results of the in vivo spermatogonial transplantation assay, the colonies per total number of cultured SSCs was significantly higher in the pifithrin-µ 0.01 µM (1596.7 ± 172.5 colonies), 3-methyladenine 0.01 µM (1522.1 ± 179.2 colonies), and P3 (1727.5 ± 196.5 colonies) treatment groups than in the DMSO control (842.8 ± 110.08 colonies), which was comparable to that of the fresh control (1882.1 ± 132.1 colonies). DISCUSSION: A basal level of autophagy is more essential for resilience in frozen SSCs after thawing, rather than the excessive activation or inhibition of autophagy. CONCLUSION: A basal level of autophagy plays a critical role in the pro-survival response of frozen SSCs after thawing; herein, a new approach by which SSC cryoprotective efficiency can be improved was identified.


Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Criopreservação , Crioprotetores/farmacologia , Espermatogônias/citologia , Animais , Masculino , Camundongos
8.
Theriogenology ; 159: 165-175, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157454

RESUMO

Cryopreservation of spermatogonial stem cells (SSCs) is a necessity to preserve the genetic information of valuable livestock herds and to produce transgenic animals. However, serum, a key component that allows efficient cryopreservation, has many limitations attributed to its undefined composition, inter-batch variations, and contamination potential. Therefore, we aimed to establish a method for serum-free cryopreservation of SSCs. To evaluate the cryopreservation efficiency of serum replacements, we assessed the recovery rate, relative proliferation potential, proliferation capacity, and apoptosis capacity. SSCs were characterized, and their functional activity was determined through immunofluorescence, RT-qPCR, and spermatogonial transplantation. The efficiency of each serum replacement was compared to that of the negative control (10% DMSO in DPBS) and positive control (10% DMSO and 40% FBS in DPBS). Our results indicated that cryopreservation with 5% human serum albumin (rHSA) exhibited a higher relative proliferation potential (274.0 ± 13.4%) than with DMSO control (100 ± 8.6%), with no significant difference from the 40% FBS (190.0 ± 20.1%). Moreover, early apoptosis also significantly decreased to a greater extent with 5% rHSA (5.1 ± 0.7%) than with DMSO control (12.9 ± 0.8%) and was at a level comparable to the 40% FBS (4.9 ± 0.8%). In addition, the SSCs cryopreserved with 5% rHSA exhibited normal self-renewal and differentiation abilities. In conclusion, 5% rHSA is a potential serum replacement for SSC cryopreservation, with properties comparable to that of serum. These results would contribute to the application of SSCs in improving livestock and in future clinical trials for human infertility treatment.


Assuntos
Células-Tronco Germinativas Adultas , Crioprotetores , Animais , Proliferação de Células , Células Cultivadas , Criopreservação/veterinária , Masculino , Camundongos , Soro , Espermatogônias
9.
Theriogenology ; 158: 445-453, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33049569

RESUMO

Cryopreservation of spermatogonial stem cells (SSCs) is important to preserve the lineages of valuable livestock and produce transgenic animals. Although interest in molecular-based cryopreservation methods have been increasing to improve their efficiency, the issue of necroptosis has not yet been considered. Therefore, the purpose of this study was to understand the role of necroptosis using necrostatin-1 (Nec-1), necroptosis inhibitor, in SSC cryopreservation, and to investigate the potential application of Nec-1 as a cryoprotectant. To determine the cryopreservation efficiency of Nec-1, we assessed recovery rate, proliferation potential, cellular membrane damage, RIP1 protein expression, apoptosis, and its mechanism. Stable characterization and functional activity of SSCs was determined via immunofluorescence, RT-qPCR, and in vivo transplantation of SSCs. Our results showed a higher proliferation potential in 50 µM Nec-1 (146.5 ± 16.8%) than in DMSO controls (100.0 ± 3.4%). Furthermore, the cryoprotective effects of Nec-1 were verified by a decrease in RIP1 expression (3.1 ± 0.2-fold vs. 1.3 ± 0.3-fold) and in early apoptosis (4.3 ± 0.8% vs. 2.6 ± 0.1%) compared to DMSO controls. Normal functional activity was observed in the SSCs after cryopreservation with 50 µM Nec-1. In conclusion, necroptosis could be a cause of cryoinjury, and their inhibitor may serve as potential effective cryoprotectant. This study will contribute to establish a molecular-based cryopreservation method, and thereby expanding the use of SSCs into the domestic livestock industry as well as for clinical applications.


Assuntos
Células-Tronco Germinativas Adultas , Necroptose , Animais , Apoptose , Criopreservação/veterinária , Imidazóis , Indóis , Masculino , Camundongos , Espermatogônias
10.
Reprod Biomed Online ; 41(6): 1070-1083, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33036927

RESUMO

RESEARCH QUESTION: Can specimen types (cells versus tissues) and additive cryoprotectant agents contribute to efficient cryopreservation of primate spermatogonial stem cells (SSC)? DESIGN: Testicular tissues or cells from four prepubertal monkeys were used in this study. The freezing efficacy of testicular tissue was compared with cell suspensions using conventional freezing media (1.4 mol/l dimethyl sulfoxide [DMSO]) and the efficacy of cryoprotectant additives (1.4 mol/l DMSO combined with trehalose 200 mmol/l, hypotaurine 14 mmol/l, necrostatin-1 50 µmol/l or melatonin 100 µmol/l) was evaluated in testicular tissue freezing. RESULTS: The survival rate (46.0 ± 4.8% versus 33.7 ± 6.0%; P = 0.0286) and number of recovered cells (5.0 ± 1.5 × 106 cells/g versus 0.7 ± 0.8 × 106 cells/g; P = 0.0286) were significantly higher in frozen tissues than in frozen cell suspensions. After tissue freezing, a higher number of recovered PGP9.5+ cells were observed with 200 mmol/l trehalose treatment than in DMSO controls (2.4 ± 0.6 × 106 cells/g versus 1.1 ± 0.3 × 106 cells/g; P = 0.0164). Normal establishment of donor-derived colony was observed in SSC after tissue freezing with 200 mmol/l trehalose. CONCLUSIONS: Testicular tissue freezing is more effective than single cell suspension freezing for higher recovery of undifferentiated spermatogonia. Moreover, it was verified that slow freezing using 200 mmol/l trehalose, 1.4 mol/l DMSO and 10% KnockOut™ Serum Replacement in Dulbecco's phosphate-buffered saline is an effective cryopreservation protocol for primate testicular tissue.


Assuntos
Criopreservação/métodos , Preservação da Fertilidade/métodos , Macaca fascicularis , Animais , Sobrevivência Celular/efeitos dos fármacos , Criopreservação/veterinária , Crioprotetores/farmacologia , Fertilidade/fisiologia , Preservação da Fertilidade/veterinária , Congelamento , Macaca fascicularis/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Maturidade Sexual/fisiologia , Espermatogônias , Testículo , Transplante Heterólogo/métodos , Transplante Heterólogo/veterinária
11.
Cancers (Basel) ; 11(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683958

RESUMO

Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.

12.
Biol Reprod ; 101(2): 360-367, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187129

RESUMO

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis in male due to their capability to multiply in numbers by self-renewal and subsequent meiotic processes. However, as SSCs are present in a very small proportion in the testis, in vitro proliferation of undifferentiated SSCs will facilitate the study of germ cell biology. In this study, we investigated the effectiveness of various cell lines as a feeder layer for rat SSCs. Germ cells enriched for SSCs were cultured on feeder layers including SIM mouse embryo-derived thioguanine and ouabain-resistant cells, C166 cells, and mouse and rat testicular endothelial cells (TECs) and their stem cell potential for generating donor-derived colonies and offspring was assessed by transplantation into recipient testes. Rat germ cells cultured on TECs showed increased mRNA and protein levels of undifferentiated spermatogonial markers. Rat SSCs derived from these germ cells underwent spermatogenesis and generated offspring when transplanted into recipients. Collectively, TECs can serve as an effective feeder layer that enhances the proliferative and self-renewal capacity of cultured rat SSCs while preserving their stemness properties.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Células Endoteliais/fisiologia , Testículo/citologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Transplante de Células , Células Alimentadoras , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
13.
Theriogenology ; 132: 172-181, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029848

RESUMO

Undifferentiated germ cells, including spermatogonial stem cells (SSCs), make up only a very small proportion of germ cells within the testis; for example, 0.03% of germ cells in the mouse testis are SSCs. In this study, we investigated the characteristics of bovine undifferentiated germ cells and developed an enrichment procedure for these cells on the basis of fluorescence-activated cell sorting (FACS), using the specific cell surface marker glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1). FACS analysis showed that only 0.6% of the total testicular cells were GFRα1-positive. These GFRα1-positive cells had a significantly higher expression of UCHL1, ZBTB16, and DDX4 (all markers of undifferentiated spermatogonial and germ cells) than that of fresh testicular cells. Quantitative reverse-transcription PCR analyses also indicated that the gene expression of BCL6B and NANOS2 was significantly higher in GFRα1-positive cells. Furthermore, xenogeneic transplantation of bovine testicular cells into immunodeficient mice resulted in 4.4-fold more colonies of GFRα1-positive cells than those of fresh testicular cells, indicating that FACS with antibodies to GFRα1 had efficiently enriched putative SSCs from total testicular cells. Collectively, these results demonstrate that GFRα1 could be used as a marker of bovine undifferentiated germ cells, including putative SSCs, and that its expression on SSCs has important implications for the further development of techniques for enriching stem cells from other species.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Membrana/metabolismo , Espermatogônias/metabolismo , Animais , Biomarcadores , Bovinos , Regulação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Maturidade Sexual , Transplante Heterólogo
14.
Int J Mol Med ; 43(5): 2230-2240, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864673

RESUMO

Hair follicles (HFs) are a well­characterized niche for adult stem cells (SCs), and include epithelial and melanocytic SCs. HF cells are an accessible source of multipotent adult SCs for the generation of the interfollicular epidermis, HF structures and sebaceous glands in addition to the reconstitution of novel HFs in vivo. In the present study, it was demonstrated that HF cells are able to be induced to differentiate into cardiomyocyte­like cells in vitro under specific conditions. It was determined that HF cells cultured on OP9 feeder cells in KnockOut­Dulbecco's modified Eagle's medium/B27 in the presence of vascular endothelial growth factors differentiated into cardiomyocyte­like cells that express markers specific to cardiac lineage, but do not express non­cardiac lineage markers including neural stem/progenitor cell, HF bulge cells or undifferentiated spermatogonia markers. These cardiomyocyte­like cells exhibited a spindle­ and filament­shaped morphology similar to that presented by cardiac muscles and exhibited spontaneous beating that persisted for over 3 months. These results demonstrate that SC reprogramming and differentiation may be induced without resulting in any genetic modification, which is important for the clinical applications of SCs including tissue and organ regeneration.


Assuntos
Folículo Piloso/citologia , Miócitos Cardíacos/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Células Alimentadoras/citologia , Células Alimentadoras/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Fator A de Crescimento do Endotélio Vascular/farmacologia
15.
Nat Commun ; 9(1): 4379, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348976

RESUMO

Maintenance of adult tissues depends on stem cell self-renewal in local niches. Spermatogonial stem cells (SSC) are germline adult stem cells necessary for spermatogenesis and fertility. We show that testicular endothelial cells (TECs) are part of the SSC niche producing glial cell line-derived neurotrophic factor (GDNF) and other factors to support human and mouse SSCs in long-term culture. We demonstrate that FGF-2 binding to FGFR1 on TECs activates the calcineurin pathway to produce GDNF. Comparison of the TEC secretome to lung and liver endothelial cells identified 5 factors sufficient for long-term maintenance of human and mouse SSC colonies in feeder-free cultures. Male cancer survivors after chemotherapy are often infertile since SSCs are highly susceptible to cytotoxic injury. Transplantation of TECs alone restores spermatogenesis in mice after chemotherapy-induced depletion of SSCs. Identifying TECs as a niche population necessary for SSC self-renewal may facilitate fertility preservation for prepubertal boys diagnosed with cancer.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Testículo/citologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Preservação da Fertilidade , Células Germinativas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Masculino , Camundongos , Espermatogênese/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos
16.
Toxicol Sci ; 164(2): 465-476, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733421

RESUMO

Many of the testicular cancer-survived patients, treated with chemotherapeutic drugs, show infertility, pre and postimplantation loss, and germ cell abnormality. Studies examining the negative effects of chemotherapeutic drugs on testicular germ cells are ongoing; however, information on the stemness properties and proteomic profiles of these cells are lacking. This study investigated the effects of chemotherapeutic drugs etoposide, cisplatin, bleomycin, and their combination (BEP) on the physiology and stem cell activity of mouse germ cells in vitro. Our results showed that treatment with the abovementioned drugs affected germ cell viability and decreased the number of proliferating germ cells significantly at specific concentrations (0.05 µM etoposide, 1 µM cisplatin, 10 µM bleomycin, and 0.1 µM BEP), which maintained a survival rate of >90%. We also observed a significantly higher percentage of apoptotic cells and alterations in the expression of undifferentiated and differentiated spermatogonia-related genes and marker proteins in germ cells exposed to abovementioned concentrations of the drugs. Next, we performed germ cell transplantation into recipient mice and observed a remarkable reduction in stemness properties of spermatogonial stem cells at these concentrations. Based on these results, we assessed the levels of differentially expressed proteins by performing proteomic analysis. We found that treatment with the abovementioned drugs induced cell damage, oxidative stress, metabolic disruption, and immune deficiency which may promote tumor regeneration, cytotoxicity, infertility, and transgenerational cellular function transmission. Thus, this study provides information about the chemotherapy-induced recurrent destruction and thereby can lead possible changes in medication.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Proteoma/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Células-Tronco Germinativas Adultas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Bleomicina/administração & dosagem , Bleomicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Etoposídeo/administração & dosagem , Etoposídeo/farmacologia , Células Germinativas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo/citologia
17.
Nucleic Acids Res ; 46(10): 4933-4949, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547954

RESUMO

During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Eritropoese/fisiologia , Globinas/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Células Eritroides/citologia , Eritropoese/genética , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Hemoglobinas/biossíntese , Hemoglobinas/genética , Humanos , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
18.
Sci Rep ; 7(1): 11441, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900261

RESUMO

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, which is dependent on the ability to self-renew and differentiation. Controlling self-renewal and differentiation of SSCs could apply to treatment of disease such as male infertility. Recently, in the field of stem cell research, it was demonstrated that effective increase in stem cell activity can be achieved by using growth factors derived from plant extracts. In this study, our aim is to investigate components from natural plant to improve the self-renewal of SSCs. To find the components, germ cells were cultured with comprehensive natural plant extracts, and then the more pure fraction, and finally single compound at different concentrations. As a result, we found 5H-purin-6-amine at 1 µg/mL, originated from Sedum sarmentosum, was a very effective compound induced SSCs proliferation. Our data showed that germ cells cultured with 5H-purin-6-amine could maintain their stable characteristics. Furthermore, transplantation results demonstrated that 5H-purin-6-amine at 1 µg/mL increased the activity of SSCs, indicating the compound could increase true SSC concentration within germ cells to 1.96-fold. These findings would be contributed to improve further reproductive research and treat male infertility by using natural plant extracts.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sedum/química , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Germinativas/citologia , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Estrutura Molecular , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Transplante de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Oncotarget ; 8(18): 29643-29656, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28410244

RESUMO

Cardiac cell therapy has the potential to revolutionize treatment of heart diseases, but its success hinders on the development of a stem cell therapy capable of efficiently producing functionally differentiated cardiomyocytes. A key to unlocking the therapeutic application of stem cells lies in understanding the molecular mechanisms that govern the differentiation process. Here we report that a population of platelet-derived growth factor receptor alpha (PDGFRA) cells derived from mouse multipotent germline stem cells (mGSCs) were capable of undergoing cardiomyogenesis in vitro. Cells derived in vitro from PDGFRA positive mGSCs express significantly higher levels of cardiac marker proteins compared to PDGFRA negative mGSCs. Using Pdgfra shRNAs to investigate the dependence of Pdgfra on cardiomyocyte differentiation, we observed that Pdgfra silencing inhibited cardiac differentiation. In a rat myocardial infarction (MI) model, transplantation of a PDGFRAenriched cell population into the rat heart readily underwent functional differentiation into cardiomyocytes and reduced areas of fibrosis associated with MI injury. Together, these results suggest that mGSCs may provide a unique source of cardiac stem/progenitor cells for future regenerative therapy of damaged heart tissue.


Assuntos
Diferenciação Celular , Células Germinativas/citologia , Células-Tronco Multipotentes/citologia , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Técnicas de Cultura de Células , Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Inativação de Genes , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Transplante de Células-Tronco
20.
PLoS One ; 11(8): e0161372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27548381

RESUMO

Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male's lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media.


Assuntos
Antioxidantes/farmacologia , Criopreservação/métodos , Crioprotetores/farmacologia , Espermatogônias/efeitos dos fármacos , Taurina/análogos & derivados , Trealose/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sericinas/farmacologia , Soro/química , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/metabolismo , Espermatogônias/transplante , Taurina/farmacologia , Testículo/citologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA