Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 220: 173469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36183870

RESUMO

Nicotine, the primary addictive substance in tobacco, produces the psychomotor, rewarding, and reinforcing effects of tobacco dependence by stimulating nicotinic acetylcholine receptors (nAChRs) in the brain. The present study determined that α4ß2 nAChRs regulate locomotor sensitization by altering dopamine concentration in the nucleus accumbens (NAc) after systemic challenge exposure to whole cigarette smoke condensate (WCSC). Rats were administered subcutaneous injection of WCSC (0.2 mg/kg nicotine/day) for 7 consecutive days and then re-exposed to WCSC after 3 days of withdrawal. Challenge exposure to WCSC significantly increased locomotor activity. This increase was decreased by the subcutaneous injection of the α4ß2 nAChR antagonist, DHßE (3 mg/kg), but not by the intraperitoneal injection of the α7 nAChR antagonist, MLA (5 mg/kg). In parallel with a decrease in locomotor activity, blockade of α4ß2 nAChRs with DHßE decreased dopamine concentration in the NAc which was elevated by challenge exposure to WCSC. These findings suggest that challenge WCSC leads to the expression of locomotor sensitization by elevating dopamine concentration via stimulation of α4ß2 nAChRs expressed in neurons of the NAc in rats.


Assuntos
Fumar Cigarros , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Nicotiana , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
Nicotine Tob Res ; 24(8): 1201-1207, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323980

RESUMO

INTRODUCTION: Nicotine increases reinforcing effects of cigarette smoking by upregulating glutamate and dopamine releases via stimulation of nicotinic acetylcholine receptors (nAChRs) in the dorsal striatum (CPu). The present study was conducted to evaluate whether non-nicotine substances in cigarette smoke potentiate nicotine-induced behaviors by increasing glutamate and dopamine concentrations in the CPu. AIMS AND METHODS: Changes in the levels of glutamate and dopamine in the CPu were analyzed using a glutamate colorimetric assay and dopamine enzyme-linked immunosorbent assay, respectively, after repeated administration of nicotine or whole cigarette smoke condensate (WCSC) in male Sprague-Dawley rats. Changes in locomotion and drug-taking behavior were analyzed using the measurements of locomotor activity and self-administration under a fixed ratio 1 schedule in response to repeated administration of nicotine or WCSC. RESULTS: Repeated subcutaneous (s.c.) injections of nicotine (0.25 mg/kg/day) for 7 consecutive days significantly increased the levels of glutamate and dopamine in the CPu. Similar results were obtained from repeated injections of WCSC (0.25 mg/kg nicotine/day, s.c.) extracted from 3R4F Kentucky reference cigarettes. Parallel with the increases in the neurotransmitter levels in the CPu, both nicotine and WCSC increased locomotor activity and self-administration (0.03 mg/kg nicotine/infusion). However, repeated injections of WCSC did not change the nicotine-induced increases in neurotransmitter levels, locomotor activity, and self-administration. CONCLUSIONS: Nicotine rather than non-nicotine substances in WCSC play a major role in potentiating behavioral sensitization and drug-taking behavior via elevation of glutamate and dopamine concentrations in the CPu of rats. IMPLICATIONS: WCSC does not augment the nicotine-induced increases in behavioral sensitization, drug-taking behavior, and glutamate and dopamine concentrations, suggesting that non-nicotine substances do not potentiate the nicotine-induced behaviors by increasing the concentrations of the neurotransmitters in the CPu. These findings imply that nicotine, but not non-nicotine substances in WCSC, may be a major contributor that induces tobacco dependence in rats.


Assuntos
Dopamina , Nicotina , Animais , Glutamatos , Masculino , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley , Nicotiana
3.
Addict Biol ; 26(2): e12913, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32339332

RESUMO

Intracellular interactions between protein kinases and metabotropic receptors in the striatum regulate behavioral changes in response to drug exposure. We investigated the difference in the degree of interaction between extracellular signal-regulated kinase (ERK) and metabotropic glutamate receptor subtype 5 (mGluR5) in the nucleus accumbens (NAc) after repeated exposure to nicotine in adult and adolescent rats. The results showed that repeated exposure to nicotine (0.5 mg/kg/day, s.c.) for seven consecutive days increased ERK phosphorylation more in adults than in adolescents. Furthermore, membrane expression of mGluR5 in gamma-aminobutyric acid (GABA) medium spiny neurons was higher in adults than adolescents as a result of repeated exposure to nicotine. Blockade of mGluR5 with MPEP (0.5 nmol/side) decreased the repeated nicotine-induced increase in ERK phosphorylation. Either blockade of mGluR5 or inhibition of ERK with SL327 (150 nmol/side) decreased the repeated nicotine-induced increase in the level of inositol-1,4,5-triphosphate (IP3 ), a key transducer associated with mGluR5-coupled signaling cascades. Similarly, interference of binding between activated ERK and mGluR5 by the blocking peptide, Tat-mGluR5-i (2 nmol/side), decreased the repeated nicotine-induced increases in IP3 and locomotor activity in adults. These findings suggest that the intracellular interaction between ERK and mGluR5 in the NAc is stronger in adult than in adolescent rats, which enhances the understanding of age-associated behavioral changes that occur after repeated exposure to nicotine.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Adolescente , Adulto , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Humanos , Masculino , Nicotina/administração & dosagem , Fosforilação , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Brain Sci ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374316

RESUMO

Cigarette smoke is a highly complex mixture of nicotine and non-nicotine constituents. Exposure to cigarette smoke enhances tobacco dependence by potentiating glutamatergic neurotransmission via stimulation of nicotinic acetylcholine receptors (nAChRs). We investigated the effects of nicotine and non-nicotine alkaloids in the cigarette smoke condensates extracted from two commercial cigarette brands in South Korea (KCSC A and KCSC B) on psychomotor behaviors and glutamate levels in the dorsal striatum. Repeated and challenge administration of KCSCs (nicotine content: 0.4 mg/kg, subcutaneous) increased psychomotor behaviors (ambulatory, rearing, and rotational activities) and time spent in psychoactive behavioral states compared to exposure to nicotine (0.4 mg/kg) alone. The increase in psychomotor behaviors lasted longer when exposed to repeated and challenge administration of KCSCs compared to nicotine alone. In parallel with sustained increase in psychomotor behaviors, repeated administration of KCSCs also caused long-lasting glutamate release in the dorsal striatum compared to nicotine alone. KCSC-induced changes in psychomotor behaviors and glutamate levels in the dorsal striatum were found to be strongly correlated. These findings suggest that non-nicotine alkaloids in commercial cigarette smoke synergistically act with nicotine on nAChRs, thereby upregulating glutamatergic response in the dorsal striatum, which contributes to the hypersensitization of psychomotor behaviors.

5.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610694

RESUMO

The dissociative anesthetic phencyclidine (PCP) and PCP derivatives, including 4'-F-PCP, are illegally sold and abused worldwide for recreational and non-medical uses. The psychopharmacological properties and abuse potential of 4'-F-PCP have not been fully characterized. In this study, we evaluated the psychomotor, rewarding, and reinforcing properties of 4'-F-PCP using the open-field test, conditioned place preference (CPP), and self-administration paradigms in rodents. Using Western immunoblotting, we also investigated the expression of dopamine (DA)-related proteins and DA-receptor-mediated downstream signaling cascades in the nucleus accumbens (NAc) of 4'-F-PCP-self-administering rats. Intraperitoneal administration of 10 mg/kg 4'-F-PCP significantly increased locomotor and rearing activities and increased CPP in mice. Intravenous administration of 1.0 mg/kg/infusion of 4'-F-PCP significantly enhanced self-administration during a 2 h session under fixed ratio schedules, showed a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement, and significantly altered the expression of DA transporter and DA D1 receptor in the NAc of rats self-administering 1.0 mg/kg 4'-F-PCP. Additionally, the expression of phosphorylated (p) ERK, pCREB, c-Fos, and FosB/ΔFosB in the NAc was significantly enhanced by 1.0 mg/kg 4'-F-PCP self-administration. Taken together, these findings suggest that 4'-F-PCP has a high potential for abuse, given its robust psychomotor, rewarding, and reinforcing properties via activation of DAergic neurotransmission and the downstream signaling pathways in the NAc.


Assuntos
Abuso de Fenciclidina/metabolismo , Fenciclidina/análogos & derivados , Fenciclidina/farmacologia , Animais , Comportamento Aditivo/fisiopatologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Fenciclidina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Reforço Psicológico , Recompensa , Autoadministração
6.
Addict Biol ; 25(6): e12850, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31749223

RESUMO

An increasing number of N-2-methoxybenzyl-phenethylamine (NBOMe) derivatives are being misused worldwide, including the potent hallucinogen 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25B-NBOMe). However, the number of studies characterizing the abuse potential and psychopharmacological properties of 25B-NBOMe is limited; thus, we examined its rewarding and reinforcing effects using conditioned place preference (CPP) and self-administration (SA) tests. Pretreatment with SCH23390 (SCH), Haloperidol (HAL), and ketanserin (KS), antagonists of dopamine D1 (DRD1 ), dopamine D2 (DRD2 ), and serotonin 2A (5-HT2A receptor) receptors, respectively, was utilized during a CPP test to investigate the involvement of the dopaminergic and serotonergic systems in 25B-NBOMe-mediated effects. We also examined the effects of 25B-NBOMe on the expression of dopamine-related proteins in the nucleus accumbens (NAcc) and ventral tegmental area (VTA). Then, we measured the dopamine level, phosphorylated CREB (p-CREB), deltaFosB (ΔFosB), and brain-derived neurotrophic factor (BDNF) in the NAcc. In addition, we explored the involvement of 5-HT2A receptors in the 25B-NBOMe-induced head twitch response (HTR). We also examined the effects of 25B-NBOMe on brain wave activity using electroencephalography. 25B-NBOMe elicited CPP and SA. SCH and HAL blocked 25B-NBOMe-induced CPP, whereas KS did not. Moreover, 25B-NBOMe altered the DRD1 , DRD2 , and dopamine transporter expression and increased dopamine levels. It also induced changes in p-CREB, ΔFosB, and BDNF expression. 25B-NBOMe induced HTR and increased 5-HT2A receptor mRNA levels, effects inhibited by KS. Furthermore, 25B-NBOMe altered delta and gamma wave activity, which was normalized by SCH and HAL. These findings show that 25B-NBOMe may induce rewarding and reinforcing effects via a dopaminergic mechanism, suggesting its abuse potential.


Assuntos
Anisóis/efeitos adversos , Anisóis/química , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Fenetilaminas/efeitos adversos , Fenetilaminas/química , Reforço Psicológico , Recompensa , Transtornos Relacionados ao Uso de Substâncias/etiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo
7.
Psychopharmacology (Berl) ; 237(3): 757-772, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31828394

RESUMO

RATIONALE: A high number of synthetic dissociative drugs continue to be available through online stores, leading to their misuse. Recent inclusions in this category are 4-MeO-PCP and 3-MeO-PCMo, analogs of phencyclidine. Although the dissociative effects of these drugs and their recreational use have been reported, no studies have investigated their abuse potential. OBJECTIVES: To examine their rewarding and reinforcing effects and explore the mechanistic correlations. METHODS: We used conditioned place preference (CPP), self-administration, and locomotor sensitization tests to assess the rewarding and reinforcing effects of the drugs. We explored their mechanism of action by pretreating dopamine receptor (DR) D1 antagonist SCH23390 and DRD2 antagonist haloperidol during CPP test and investigated the effects of 4-MeO-PCP and 3-MeO-PCMo on dopamine-related proteins in the ventral tegmental area and nucleus accumbens. We also measured the levels of dopamine, phosphorylated cyclic-AMP response element-binding (p-CREB) protein, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens. Additionally, we examined the effects of both drugs on brain wave activity using electroencephalography. RESULTS: While both 4-MeO-PCP and 3-MeO-PCMo induced CPP and self-administration, only 4-MeO-PCP elicited locomotor sensitization. SCH23390 and haloperidol inhibited the acquisition of drug CPP. 4-MeO-PCP and 3-MeO-PCMo altered the levels of tyrosine hydroxylase, DRD1, DRD2, and dopamine, as well as that of p-CREB, deltaFosB, and BDNF. All drugs increased the delta and gamma wave activity, whereas pretreatment with SCH23390 and haloperidol inhibited it. CONCLUSION: Our results indicate that 4-MeO-PCP and 3-MeO-PCMo induce rewarding and reinforcing effects that are probably mediated by the mesolimbic dopamine system, suggesting an abuse liability in humans.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dopamina/metabolismo , Morfolinas/administração & dosagem , Núcleo Accumbens/metabolismo , Fenciclidina/análogos & derivados , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Drogas Desenhadas/administração & dosagem , Drogas Ilícitas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Fenciclidina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Int J Mol Sci ; 20(12)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208140

RESUMO

Nicotine causes tobacco dependence, which may result in fatal respiratory diseases. The striatum is a key structure of forebrain basal nuclei associated with nicotine dependence. In the striatum, glutamate release is increased when α7 nicotinic acetylcholine receptors expressed in the glutamatergic terminals are exposed to nicotine, and over-stimulates glutamate receptors in gamma amino-butyric acid (GABA)ergic neurons. These receptor over-stimulations in turn potentiate GABAergic outputs to forebrain basal nuclei and contribute to the increase in psychomotor behaviors associated with nicotine dependence. In parallel with glutamate increases, nicotine exposure elevates brain-derived neurotrophic factor (BDNF) release through anterograde and retrograde targeting of the synapses of glutamatergic terminals and GABAergic neurons. This article reviews nicotine-exposure induced elevations of glutamatergic neurotransmission, the bidirectional targeting of BDNF in the striatum, and the potential regulatory role played by BDNF in behavioral responses to nicotine exposure.


Assuntos
Comportamento , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Nicotina/administração & dosagem , Transmissão Sináptica , Animais , Ácido Glutâmico/biossíntese , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Fatores de Crescimento Neural/metabolismo , Receptor trkB/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/agonistas
9.
Front Behav Neurosci ; 12: 47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615877

RESUMO

Nicotine, a nicotinic acetylcholine receptor agonist, produces the reinforcing effects of tobacco dependence by potentiating dopaminergic and glutamatergic neurotransmission. Non-nicotine alkaloids in tobacco also contribute to dependence by activating the cholinergic system. However, glutamatergic neurotransmission in the dorsal striatum associated with behavioral changes in response to cigarette smoking has not been investigated. In this study, the authors investigated alterations in glutamate levels in the rat dorsal striatum related to behavioral alterations after repeated administration of cigarette smoke condensate (CSC) using the real-time glutamate biosensing and an open-field behavioral assessment. Repeated administration of CSC including 0.4 mg nicotine (1.0 mL/kg/day, subcutaneous) for 14 days significantly increased extracellular glutamate concentrations more than repeated nicotine administration. In parallel with the hyperactivation of glutamate levels, repeated administration of CSC-evoked prolonged hypersensitization of psychomotor activity, including locomotor and rearing activities. These findings suggest that the CSC-induced psychomotor activities are closely associated with the elevation of glutamate concentrations in the rat dorsal striatum.

10.
Sci Rep ; 7(1): 15009, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118361

RESUMO

Neurochemical alterations associated with behavioral responses induced by re-exposure to nicotine have not been sufficiently characterized in the dorsal striatum. Herein, we report on changes in glutamate concentrations in the rat dorsal striatum associated with behavioral alterations after nicotine challenge. Nicotine challenge (0.4 mg/kg/day, subcutaneous) significantly increased extracellular glutamate concentrations up to the level observed with repeated nicotine administration. This increase occurred in parallel with an increase in behavioral changes in locomotor and rearing activities. In contrast, acute nicotine administration and nicotine withdrawal on days 1 and 6 did not alter glutamate levels or behavioral changes. Blockade of α7 nicotinic acetylcholine receptors (nAChRs) significantly decreased the nicotine challenge-induced increases in extracellular glutamate concentrations and locomotor and rearing activities. These findings suggest that behavioral changes in locomotor and rearing activities after re-exposure to nicotine are closely associated with hyperactivation of the glutamate response by stimulating α7 nAChRs in the rat dorsal striatum.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Ácido Glutâmico/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/farmacologia , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/fisiopatologia
11.
Int J Neuropsychopharmacol ; 18(12)2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26142455

RESUMO

BACKGROUND: Phosphorylation state of dopamine- and cAMP-regulated phosphoprotein, molecular weight 32 kDa (DARPP32) is crucial to understand drug-mediated synaptic plasticity. In this study, mechanisms underlying repeated cocaine-stimulated phosphorylation of DARPP32 at threonine 75 (pDARPP32-Thr75) were determined by investigating the hypothesis that activation of protein kinases and phosphatases coupled to glutamate signaling is necessary for the regulation of pDARPP32-Thr75 after repeated cocaine administration. METHODS: Intracaudate drug infusions into the rat dorsal striatum followed by Western immunoblot analysis were mainly performed to test this hypothesis. RESULTS: The results demonstrated that 7 repeated daily intraperitoneal injections of cocaine (20mg/kg) upregulated the expression of pDARPP32-Thr75. Increases in the cytosolic Ca(2+) concentrations followed by Ca(2+)-dependent protein kinase activation through stimulation of Ca(2+) channels in striatal neurons were necessary for the phosphorylation. Activation of protein phosphatases further regulated the phosphorylation state by deactivating pDARPP32-Thr75 and upstream protein kinases. CONCLUSION: These findings suggest that activation of protein kinases and phosphatases coupled to glutamate receptors controls the phosphorylation state of DARPP32-Thr75 after repeated exposure to cocaine in the dorsal striatum in a Ca(2+)-dependent manner.


Assuntos
Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Animais , Canais de Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo , Canais de Sódio/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Exp Brain Res ; 233(5): 1511-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25702161

RESUMO

We previously found that the dopamine D2-type receptors (D2 and D3 receptors), coupled to protein kinase G (PKG), upregulate locomotor activity after repeated cocaine administration. In this study, D4 receptors, another type of D2 receptor also coupled to PKG, were examined to determine their requirement in the regulation of locomotor activity after repeated cocaine administration. The results demonstrated that repeated injections of cocaine (20 mg/kg), given once a day for seven consecutive days, significantly increased extracellular dopamine concentrations. Intra-caudate infusion of the D4 receptor agonist, PD168077 (10 nmol), and the PKG inhibitor, KT5823 (2 nmol), significantly decreased the repeated cocaine-induced increase in dopamine levels and locomotor activity. However, intra-caudate infusion of KT5823, but not PD168077, decreased ∆FosB immunoreactivity elevated by repeated cocaine administration. These findings suggest that D4 receptors linked to PKG could be a key modulator for dopamine release required for changes in locomotor activity caused by repeated cocaine exposure.


Assuntos
Cocaína/administração & dosagem , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Receptores de Dopamina D4/metabolismo , Análise de Variância , Animais , Benzamidas/farmacologia , Carbazóis/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/genética , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D4/genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA