Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(10): pgae424, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39381646

RESUMO

Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a fraction of the blood-stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring-stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.

2.
bioRxiv ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38410435

RESUMO

Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a small fraction of the blood stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.

3.
mBio ; 9(3)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739900

RESUMO

Plasmodium vivax causes heavy burdens of disease across malarious regions worldwide. Mature P. vivax asexual and transmissive gametocyte stages occur in the blood circulation, and it is often assumed that accumulation/sequestration in tissues is not an important phase in their development. Here, we present a systematic study of P. vivax stage distributions in infected tissues of nonhuman primate (NHP) malaria models as well as in blood from human infections. In a comparative analysis of the transcriptomes of P. vivax and Plasmodium falciparum blood-stage parasites, we found a conserved cascade of stage-specific gene expression despite the greatly different gametocyte maturity times of these two species. Using this knowledge, we validated a set of conserved asexual- and gametocyte-stage markers both by quantitative real-time PCR and by antibody assays of peripheral blood samples from infected patients and NHP (Aotus sp.). Histological analyses of P. vivax parasites in organs of 13 infected NHP (Aotus and Saimiri species) demonstrated a major fraction of immature gametocytes in the parenchyma of the bone marrow, while asexual schizont forms were enriched to a somewhat lesser extent in this region of the bone marrow as well as in sinusoids of the liver. These findings suggest that the bone marrow is an important reservoir for gametocyte development and proliferation of malaria parasites.IMPORTANCEPlasmodium vivax malaria continues to cause major public health burdens worldwide. Yet, significant knowledge gaps in the basic biology and epidemiology of P. vivax malaria remain, largely due to limited available tools for research and diagnostics. Here, we present a systematic examination of tissue sequestration during P. vivax infection. Studies of nonhuman primates and malaria patients revealed enrichment of developing sexual stages (gametocytes) and mature replicative stages (schizonts) in the bone marrow and liver, relative to those present in peripheral blood. Identification of the bone marrow as a major P. vivax tissue reservoir has important implications for parasite diagnosis and treatment.


Assuntos
Medula Óssea/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium vivax/crescimento & desenvolvimento , Animais , Aotidae , Feminino , Humanos , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saimiri
4.
Parasitol Int ; 63(2): 278-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24291603

RESUMO

Plasmodium vivax is the most widely distributed human malaria parasite. Despite its importance, both clinical research and basic research have been hampered by lack of a convenient in vitro culture system, in part due to the parasite's infection preference of reticulocytes rather than mature erythrocytes. The use of reticulocyte-producing hematopoietic stem cell culture has been proposed for the maintenance of the parasite, but good numbers of reticulocytes and P. vivax parasites sufficient for practical use in research have been difficult to produce from this system. Here, we report an improved method of hematopoietic stem cell culture for P. vivax infection, which requires less time and produces higher or equivalent percentage of reticulocytes than previously reported systems. Reticulocytes were cultured from cryopreserved erythroblasts that were frozen after 8day-cultivation of purified CD34+ cells from human umbilical cord blood. This method of production allowed the recovery of reticulocytes in a shorter time than with continuous stem cell culture. We obtained a relatively high percentage of peak reticulocyte production by using co-cultivation with a mouse stromal cell line. Using P. vivax mature stage parasites obtained from infected Aotus monkeys, we observed substantial numbers (up to 0.8% of the total number of the cells) of newly invaded reticulocytes 24h after initial cultivation. The addition of fresh reticulocytes after 48h culture, however, did not result in significant increase of second cycle reticulocyte invasion. Assays of invasion inhibition with specific antibodies were successful with this system, demonstrating potential for study of biological processes as well as the conditions necessary for long-term maintenance of P. vivax in vitro.


Assuntos
Eritroblastos/citologia , Plasmodium vivax/citologia , Plasmodium vivax/fisiologia , Reticulócitos/parasitologia , Animais , Aotidae , Técnicas de Cultura de Células , Linhagem Celular , Criopreservação , Humanos , Malária Vivax/parasitologia , Camundongos
5.
PLoS One ; 7(6): e39569, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22724026

RESUMO

BACKGROUND: Chloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization. METHODOLOGY AND FINDINGS: We describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K(+) to reverse membrane potential hyperpolarization caused by valinomycin treatment. CONCLUSION: Isolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an electrochemical potential-driven transporter in the drug/metabolite superfamily that (appropriately mutated) acts as a saturable simple carrier for the facilitated diffusion of protonated CQ.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Dictyostelium/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trifosfato de Adenosina/metabolismo , Amônia/farmacologia , Animais , Antimaláricos/farmacologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular Transformada , Cloroquina/metabolismo , Cloroquina/farmacologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Dictyostelium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ionóforos/farmacologia , Macrolídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Fenótipo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Potássio/metabolismo , Valinomicina/farmacologia , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA