Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29321315

RESUMO

Paramyxovirus V proteins are known antagonists of the RIG-I-like receptor (RLR)-mediated interferon induction pathway, interacting with and inhibiting the RLR MDA5. We report interactions between the Nipah virus V protein and both RIG-I regulatory protein TRIM25 and RIG-I. We also observed interactions between these host proteins and the V proteins of measles virus, Sendai virus, and parainfluenza virus. These interactions are mediated by the conserved C-terminal domain of the V protein, which binds to the tandem caspase activation and recruitment domains (CARDs) of RIG-I (the region of TRIM25 ubiquitination) and to the SPRY domain of TRIM25, which mediates TRIM25 interaction with the RIG-I CARDs. Furthermore, we show that V interaction with TRIM25 and RIG-I prevents TRIM25-mediated ubiquitination of RIG-I and disrupts downstream RIG-I signaling to the mitochondrial antiviral signaling protein. This is a novel mechanism for innate immune inhibition by paramyxovirus V proteins, distinct from other known V protein functions such as MDA5 and STAT1 antagonism.IMPORTANCE The host RIG-I signaling pathway is a key early obstacle to paramyxovirus infection, as it results in rapid induction of an antiviral response. This study shows that paramyxovirus V proteins interact with and inhibit the activation of RIG-I, thereby interrupting the antiviral signaling pathway and facilitating virus replication.


Assuntos
Proteína DEAD-box 58/metabolismo , Infecções por Paramyxoviridae/metabolismo , Paramyxoviridae/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Células A549 , Animais , Proteína DEAD-box 58/genética , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Infecções por Paramyxoviridae/genética , Receptores Imunológicos , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Proteínas Virais/genética
2.
mBio ; 8(2)2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377530

RESUMO

Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.IMPORTANCE Ebola virus and other emerging RNA viruses are significant but unpredictable public health threats. Therapeutic approaches with broad-spectrum activity could provide an attractive response to such infections. We describe a novel assay that can identify small molecules that overcome Ebola virus-encoded innate immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic drugs, including doxorubicin. Follow-up studies provide new insight into how doxorubicin induces interferon (IFN) responses, revealing activation of both the DNA damage response kinase ATM and the DNA sensor cGAS and its partner signaling protein STING. The studies further demonstrate that the ATM and cGAS-STING pathways of IFN induction are a point of vulnerability not only for Ebola virus but for other RNA viruses as well, because viral innate immune antagonists consistently fail to block these signals. These studies thereby define a novel avenue for therapeutic intervention against emerging RNA viruses.


Assuntos
Antivirais/farmacologia , Dano ao DNA/imunologia , Ebolavirus/fisiologia , Evasão da Resposta Imune/efeitos dos fármacos , Interferons/metabolismo , Inibidores da Topoisomerase II/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Ebolavirus/imunologia , Humanos
3.
Virus Res ; 209: 56-66, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26221764

RESUMO

Programmed cell death is essential to survival of multicellular organisms. Previously restricted to apoptosis, the concept of programmed cell death is now extended to other mechanisms, as programmed necrosis or necroptosis, autophagic cell death, pyroptosis and parthanatos, among others. Viruses have evolved to manipulate and take control over the programmed cell death response, and the infected cell attempts to neutralize viral infections displaying different stress signals and defensive pathways before taking the critical decision of self-destruction. Learning from viruses and their interplay with the host may help us to better understand the complexity of the self-defense death response that when altered might cause disorders as important as cancer. In addition, as the fields of immunotherapy and oncolytic viruses advance as promising novel cancer therapies, the programmed cell death response reemerges as a key point for the success of both therapeutic approaches. In this review we summarize the research of the multimodal cell death response induced by Newcastle disease viruses (NDV), considered nowadays a promising viral oncolytic therapeutic, and how the manipulation of the host programmed cell death response can enhance the NDV antitumor capacity.


Assuntos
Vírus da Doença de Newcastle/fisiologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Apoptose , Autofagia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Vírus Oncolíticos/crescimento & desenvolvimento
4.
J Virol ; 89(4): 2241-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25505067

RESUMO

UNLABELLED: Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. IMPORTANCE: The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts puzzled about molecular causes for such efficient crossing of the species barrier compared to other avian influenza viruses. Mx proteins are known restriction factors preventing influenza virus replication. Unfortunately, some viruses (e.g., human IAV) have developed some resistance, which is associated with specific amino acids in their nucleoproteins, the target of Mx function. Here, we demonstrate that the novel H7N9 bird IAV already carries a nucleoprotein that overcomes the inhibition of viral replication by human MxA. This is the first example of an avian IAV that is naturally less sensitive to Mx-mediated inhibition and might explain why H7N9 viruses transmitted efficiently to humans.


Assuntos
Evasão da Resposta Imune , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Aviária/virologia , Influenza Humana/imunologia , Proteínas de Resistência a Myxovirus/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas do Core Viral/imunologia , Animais , Aves , Linhagem Celular , China , Humanos , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA , Proteínas do Core Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
5.
mBio ; 5(2): e01006-14, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24692634

RESUMO

The cytoplasmic helicase RIG-I is an established sensor for viral 5'-triphosphorylated RNA species. Recently, RIG-I was also implicated in the detection of intracellular bacteria. However, little is known about the host cell specificity of this process and the bacterial pathogen-associated molecular pattern (PAMP) that activates RIG-I. Here we show that RNA of Salmonella enterica serovar Typhimurium activates production of beta interferon in a RIG-I-dependent fashion only in nonphagocytic cells. In phagocytic cells, RIG-I is obsolete for detection of Salmonella infection. We further demonstrate that Salmonella mRNA reaches the cytoplasm during infection and is thus accessible for RIG-I. The results from next-generation sequencing analysis of RIG-I-associated RNA suggest that coding bacterial mRNAs represent the activating PAMP. IMPORTANCE S. Typhimurium is a major food-borne pathogen. After fecal-oral transmission, it can infect epithelial cells in the gut as well as immune cells (mainly macrophages, dendritic cells, and M cells). The innate host immune system relies on a growing number of sensors that detect pathogen-associated molecular patterns (PAMPs) to launch a first broad-spectrum response to invading pathogens. Successful detection of a given pathogen depends on colocalization of host sensors and PAMPs as well as potential countermeasures of the pathogen during infection. RIG-I-like helicases were mainly associated with detection of RNA viruses. Our work shows that S. Typhimurium is detected by RIG-I during infection specifically in nonimmune cells.


Assuntos
RNA Helicases DEAD-box/imunologia , Interações Hospedeiro-Patógeno , RNA Bacteriano/imunologia , RNA Mensageiro/imunologia , Receptores Imunológicos/imunologia , Salmonella typhimurium/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , Camundongos , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Receptores Imunológicos/metabolismo
6.
J Virol ; 88(8): 4572-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478431

RESUMO

UNLABELLED: Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-ß) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE: The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.


Assuntos
Infecções por Bunyaviridae/enzimologia , RNA Helicases DEAD-box/metabolismo , Endossomos/metabolismo , Interferon Tipo I/imunologia , Phlebovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Linhagem Celular , Estruturas Citoplasmáticas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Endossomos/genética , Humanos , Interferon Tipo I/genética , Phlebovirus/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Receptores Imunológicos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/genética
7.
Structure ; 20(12): 2048-61, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23063562

RESUMO

RIG-I is a cytosolic sensor of viral RNA, comprised of two N-terminal CARDs followed by helicase and C-terminal regulatory domains (helicase-CTD). Viral RNA binds to the helicase-CTD and "exposes" the CARDs for downstream signaling. The role of the second CARD (CARD2) is essential as RIG-I activation requires dephosphorylation of Thr170 followed by ubiquitination at Lys172. Here, we present the solution structure and dynamics of human RIG-I CARD2. Surprisingly, we find that Thr170 is mostly buried. Parallel studies on the phosphomimetic T170E mutant suggest that the loss of function upon Thr170 phosphorylation is likely associated with changes in the CARD1-CARD2 interface that may prevent Lys172 ubiquitination and/or binding to free K63-linked polyubiquitin. We also demonstrate a strong interaction between CARD2 and the helicase-CTD, and show that mutations at the interface result in constitutive activation of RIG-I. Collectively, our data suggests a close interplay between phosphorylation, ubiquitination, and activation of human RIG-I, all mediated by CARD2.


Assuntos
RNA Helicases DEAD-box/química , Modelos Moleculares , Substituição de Aminoácidos , Domínio Catalítico , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Interferon beta/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/química , Fosforilação , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores Imunológicos , Propriedades de Superfície , Ativação Transcricional , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA