Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2320995121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865271

RESUMO

Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.


Assuntos
Pareamento Cromossômico , Troca Genética , Meiose , Ubiquitina-Proteína Ligases , Animais , Camundongos , Masculino , Feminino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Camundongos Knockout , Humanos , Ligases
2.
iScience ; 27(4): 109400, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38523777

RESUMO

Rho GTPases are molecular switches regulating multiple cellular processes. To investigate the role of RhoA in normal intestinal physiology, we used a conditional mouse model overexpressing a dominant negative RhoA mutant (RhoAT19N) in the intestinal epithelium. Although RhoA inhibition did not cause an overt phenotype, increased levels of nuclear ß-catenin were observed in the small intestinal epithelium of RhoAT19N mice, and the overexpression of multiple Wnt target genes revealed a chronic activation of Wnt signaling. Elevated Wnt signaling in RhoAT19N mice and intestinal organoids did not affect the proliferation of intestinal epithelial cells but significantly interfered with their differentiation. Importantly, 17-month-old RhoAT19N mice showed a significant increase in the number of spontaneous intestinal tumors. Altogether, our results indicate that RhoA regulates the differentiation of intestinal epithelial cells and inhibits tumor initiation, likely through the control of Wnt signaling, a key regulator of proliferation and differentiation in the intestine.

3.
Clin Transl Med ; 14(2): e1554, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38344872

RESUMO

BACKGROUND: Luminal A tumours generally have a favourable prognosis but possess the highest 10-year recurrence risk among breast cancers. Additionally, a quarter of the recurrence cases occur within 5 years post-diagnosis. Identifying such patients is crucial as long-term relapsers could benefit from extended hormone therapy, while early relapsers might require more aggressive treatment. METHODS: We conducted a study to explore non-structural chromosome maintenance condensin I complex subunit H's (NCAPH) role in luminal A breast cancer pathogenesis, both in vitro and in vivo, aiming to identify an intratumoural gene expression signature, with a focus on elevated NCAPH levels, as a potential marker for unfavourable progression. Our analysis included transgenic mouse models overexpressing NCAPH and a genetically diverse mouse cohort generated by backcrossing. A least absolute shrinkage and selection operator (LASSO) multivariate regression analysis was performed on transcripts associated with elevated intratumoural NCAPH levels. RESULTS: We found that NCAPH contributes to adverse luminal A breast cancer progression. The intratumoural gene expression signature associated with elevated NCAPH levels emerged as a potential risk identifier. Transgenic mice overexpressing NCAPH developed breast tumours with extended latency, and in Mouse Mammary Tumor Virus (MMTV)-NCAPHErbB2 double-transgenic mice, luminal tumours showed increased aggressiveness. High intratumoural Ncaph levels correlated with worse breast cancer outcome and subpar chemotherapy response. A 10-gene risk score, termed Gene Signature for Luminal A 10 (GSLA10), was derived from the LASSO analysis, correlating with adverse luminal A breast cancer progression. CONCLUSIONS: The GSLA10 signature outperformed the Oncotype DX signature in discerning tumours with unfavourable outcomes, previously categorised as luminal A by Prediction Analysis of Microarray 50 (PAM50) across three independent human cohorts. This new signature holds promise for identifying luminal A tumour patients with adverse prognosis, aiding in the development of personalised treatment strategies to significantly improve patient outcomes.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Perfilação da Expressão Gênica , Prognóstico , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
4.
Res Sq ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37886490

RESUMO

Despite their generally favorable prognosis, luminal A tumors paradoxically pose the highest ten-year recurrence risk among breast cancers. From those that relapse, a quarter of them do it within five years after diagnosis. Identifying such patients is crucial, as long-term relapsers could benefit from extended hormone therapy, whereas early relapsers may require aggressive treatment. In this study, we demonstrate that NCAPH plays a role in the pathogenesis of luminal A breast cancer, contributing to its adverse progression in vitro and in vivo. Furthermore, we reveal that a signature of intratumoral gene expression, associated with elevated levels of NCAPH, serves as a potential marker to identify patients facing unfavorable progression of luminal A breast cancer. Indeed, transgenic mice overexpressing NCAPH generated breast tumors with long latency, and in MMTV-NCAPH/ErbB2+ double-transgenic mice, the luminal tumors formed were more aggressive. In addition, high intratumoral levels of Ncaph were associated with worse breast cancer evolution and poor response to chemotherapy in a cohort of genetically heterogeneous transgenic mice generated by backcrossing. In this cohort of mice, we identified a series of transcripts associated with elevated intratumoral levels of NCAPH, which were linked to adverse progression of breast cancer in both mice and humans. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) multivariate regression analysis on this series of transcripts, we derived a ten-gene risk score. This score is defined by a gene signature (termed Gene Signature for Luminal A 10 or GSLA10) that correlates with unfavorable progression of luminal A breast cancer. The GSLA10 signature surpassed the Oncotype DX signature in discerning tumors with unfavorable outcomes (previously categorized as Luminal A by PAM50) across three independent human cohorts. This GSLA10 signature aids in identifying patients with Luminal A tumors displaying adverse prognosis, who could potentially benefit from personalized treatment strategies.

5.
Oncogene ; 42(43): 3169-3181, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660182

RESUMO

Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N7-guanosine methylation (m7G) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells. Mechanistically, we find that m7G in tRNAs protects them from stress-induced cleavage and processing into 5' tRNA fragments. Our analyses reveal that the loss of tRNA m7G methylation activates stress response pathways, sensitising cancer cells to stress. Furthermore, we find that the loss of METTL1 reduces tumour growth and increases cytotoxic stress in vivo. Our study uncovers the role of m7G methylation of tRNAs in stress responses and highlights the potential of targeting METTL1 to sensitise cancer cells to chemotherapy.

6.
J Funct Biomater ; 14(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504857

RESUMO

The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery systems (DDS) have been demonstrated to be suitable engineered platforms for drug targeted/sustained release. The investigation of the chronobiology-nanotechnology relationship, i.e., timing DDS performance according to a patient's circadian rhythm, may greatly improve cancer clinical outcomes. In the present work, we synthesized nanosystems based on an octa-arginine (R8)-modified poly(amidoamine) dendrimer conjugated with the anticancer drug paclitaxel (PTX), G4-PTX-R8, and its physicochemical properties were revealed to be appropriate for in vitro delivery. The influence of the circadian rhythm on its cellular internalization efficiency and potential therapeutic effect on human cervical cancer cells (HeLa) was studied. Cell-internalized PTX and caspase activity, as a measure of induced apoptosis, were monitored for six time points. Higher levels of PTX and caspase-3/9 were detected at T8, suggesting that the internalization of G4-PTX-R8 into HeLa cells and apoptosis are time-specific/-regulated phenomena. For a deeper understanding, the clock protein Bmal1-the main regulator of rhythmic activity, was silenced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. Bmal1 silencing was revealed to have an impact on both PTX release and caspase activity, evidencing a potential role for circadian rhythm on drug delivery/therapeutic effect mediated by G4-PTX-R8.

7.
Mol Cancer ; 22(1): 119, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516825

RESUMO

Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.


Assuntos
Carcinogênese , Neoplasias da Próstata , Masculino , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias da Próstata/genética , Transcrição Gênica , Processamento Pós-Transcricional do RNA , Metiltransferases/genética
8.
Oncogene ; 42(5): 389-405, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476833

RESUMO

The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Neoplasias , Humanos , Linhagem Celular , Proteínas Monoméricas de Ligação ao GTP/genética , Neoplasias/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais/genética
9.
Cancer Res ; 83(2): 239-250, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36409821

RESUMO

Adult-type granulosa cell tumors (AGCT) are the most common type of malignant ovarian sex cord-stromal tumors. Most AGCTs carry the somatic variant c.402C>G (p.C134W) affecting the transcription factor FOXL2. Germline dominant variants in FOXL2 are responsible for blepharophimosis syndrome, which is characterized by underdevelopment of the eyelid. In this work, we generated a mouse model harboring the C134W variant of FOXL2 to evaluate in vivo the poorly understood oncogenic role of FOXL2. The mutation was dominant regarding eyelid hypoplasia, reminiscent of blepharophimosis syndrome. Interestingly, Foxl2+/C134W female mice had reduced fertility and developed AGCTs through a progression from abnormal ovaries with aberrant granulosa cells to ovaries with stromal hyperplasia and atypia and on to tumors in adut mice. The genes dysregulated in mouse AGCTs exhibited the hallmarks of cancer and were consistent with a gain-of-function of the mutated allele affecting TGFß signaling. A comparison of these data with previous results on human AGCTs indicated similar deregulated pathways. Finally, a mutational analysis of mouse AGCT transcriptomic data suggested the absence of additional driver mutations apart from FOXL2-C134W. These results provide a clear in vivo example in which a single mutational hit triggers tumor development associated with profound transcriptomic alterations. SIGNIFICANCE: A newly generated mouse model carrying a FOXL2 mutation characteristic of adult-type granulosa cell tumors shows that FOXL2 C134W shifts the transcriptome towards a signature of granulosa cell cancer and drives tumorigenesis.


Assuntos
Tumor de Células da Granulosa , Neoplasias Ovarianas , Anormalidades da Pele , Adulto , Feminino , Humanos , Animais , Camundongos , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Ovarianas/genética , Mutação , Proteína Forkhead Box L2/genética
10.
Front Cell Dev Biol ; 10: 1026287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393850

RESUMO

C3G is a Rap1 guanine nucleotide exchange factor that controls platelet activation, aggregation, and the release of α-granule content. Transgenic expression of C3G in platelets produces a net proangiogenic secretome through the retention of thrombospondin-1. In a physiological context, C3G also promotes megakaryocyte maturation and proplatelet formation, but without affecting mature platelet production. The aim of this work is to investigate whether C3G is involved in pathological megakaryopoiesis, as well as its specific role in platelet mediated angiogenesis and tumor metastasis. Using megakaryocyte-specific C3G knockout and transgenic mouse models, we found that both C3G overexpression and deletion promoted platelet-mediated angiogenesis, induced by tumor cell implantation or hindlimb ischemia, through differential release of proangiogenic and antiangiogenic factors. However, only C3G deletion resulted in a higher recruitment of hemangiocytes from the bone marrow. In addition, C3G null expression enhanced thrombopoietin (TPO)-induced platelet production, associated with reduced TPO plasma levels. Moreover, after 5-fluorouracil-induced platelet depletion and rebound, C3G knockout mice showed a defective return to homeostatic platelet levels, indicating impaired platelet turnover. Mechanistically, C3G promotes c-Mpl ubiquitination by inducing Src-mediated c-Cbl phosphorylation and participates in c-Mpl degradation via the proteasome and lysosome systems, affecting TPO internalization. We also unveiled a positive role of platelet C3G in tumor cell-induced platelet aggregation, which facilitated metastatic cell homing and adhesion. Overall, these findings revealed that C3G plays a crucial role in platelet-mediated angiogenesis and metastasis, as well as in platelet level modulation in response to pathogenic stimuli.

11.
Oncogene ; 41(49): 5279-5288, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316444

RESUMO

Colorectal cancer causes >900,000 deaths every year and a deeper understanding of the molecular mechanisms underlying this disease will contribute to improve its clinical management and survival. Myosin Vb (MYO5B) regulates intracellular vesicle trafficking, and inactivation of this myosin disrupts the polarization and differentiation of intestinal epithelial cells causing microvillous inclusion disease (MVID), a rare congenital disorder characterized by intractable life-threatening diarrhea. Here, we show that the loss Myosin Vb interfered with the differentiation/polarization of colorectal cancer cells. Although modulation of Myosin Vb expression did not affect the proliferation of colon cancer cells, MYO5B inactivation increased their migration, invasion, and metastatic potential. Moreover, Myo5b inactivation in an intestine-specific knockout mouse model caused a >15-fold increase in the number of azoxymethane-initiated small intestinal tumors. Consistently, reduced expression of Myosin Vb in a cohort of 155 primary colorectal tumors was associated with shorter patient survival. In conclusion, we show here that loss of Myosin Vb reduces polarization/differentiation of colon cancer cells while enhancing their metastatic potential, demonstrating a tumor suppressor function for this myosin. Moreover, reduced expression of Myosin Vb in primary tumors identifies a subset of poor prognosis colorectal cancer patients that could benefit from more aggressive therapeutic regimens.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Miosina Tipo V , Animais , Camundongos , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Enterócitos/metabolismo , Enterócitos/patologia , Genes Supressores de Tumor , Camundongos Knockout , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas , Humanos
12.
Cancers (Basel) ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36011023

RESUMO

The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC-IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial-mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.

13.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742831

RESUMO

Chronic myeloid leukaemia (CML) is a haematological neoplasm driven by the BCR/ABL fusion oncogene. The monogenic aspect of the disease and the feasibility of ex vivo therapies in haematological disorders make CML an excellent candidate for gene therapy strategies. The ability to abolish any coding sequence by CRISPR-Cas9 nucleases offers a powerful therapeutic opportunity to CML patients. However, a definitive cure can only be achieved when only CRISPR-edited cells are selected. A gene-trapping approach combined with CRISPR technology would be an ideal approach to ensure this. Here, we developed a CRISPR-Trap strategy that efficiently inserts a donor gene trap (SA-CMV-Venus) cassette into the BCR/ABL-specific fusion point in the CML K562 human cell line. The trapping cassette interrupts the oncogene coding sequence and expresses a reporter gene that enables the selection of edited cells. Quantitative mRNA expression analyses showed significantly higher level of expression of the BCR/Venus allele coupled with a drastically lower level of BCR/ABL expression in Venus+ cell fractions. Functional in vitro experiments showed cell proliferation arrest and apoptosis in selected Venus+ cells. Finally, xenograft experiments with the selected Venus+ cells showed a large reduction in tumour growth, thereby demonstrating a therapeutic benefit in vivo. This study represents proof of concept for the therapeutic potential of a CRISPR-Trap system as a novel strategy for gene elimination in haematological neoplasms.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Apoptose/genética , Sistemas CRISPR-Cas/genética , Proliferação de Células/genética , Doença Crônica , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia
14.
Cell Rep ; 38(11): 110522, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294890

RESUMO

A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Síndrome de Noonan , Animais , Carcinogênese/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação/genética , Oncogenes
15.
CRISPR J ; 4(4): 519-535, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406033

RESUMO

Chronic myeloid leukemia (CML) is a hematopoietic malignancy produced by a unique oncogenic event involving the constitutively active tyrosine-kinase (TK) BCR/ABL1. TK inhibitors (TKI) changed its prognosis and natural history. Unfortunately, ABL1 remains unaffected by TKIs. Leukemic stem cells (LSCs) remain, and resistant mutations arise during treatment. To address this problem, we have designed a therapeutic CRISPR-Cas9 deletion system targeting BCR/ABL1. The system was efficiently electroporated to cell lines, LSCs from a CML murine model, and LSCs from CML patients at diagnosis, generating a specific ABL1 null mutation at high efficiency and allowing the edited leukemic cells to be detected and tracked. The CRISPR-Cas9 deletion system triggered cell proliferation arrest and apoptosis in murine and human CML cell lines. Patient and murine-derived xenografts with CRISPR-edited LSCs in NOD SCID gamma niches revealed that normal multipotency and repopulation ability of CRISPR edited LSCs were fully restored. Normal hematopoiesis was restored, avoiding myeloid bias. To the best of our knowledge, we show for the first time how a CRISPR-Cas9 deletion system efficiently interrupts BCR/ABL1 oncogene in primary LSCs to bestow a therapeutic benefit. This study is a proof of concept for genome editing in all those diseases, like CML, sustained by a single oncogenic event, opening up new therapeutic opportunities.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Oncogenes , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Fusão bcr-abl/genética , Expressão Gênica , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Camundongos , Células-Tronco Neoplásicas/metabolismo , Estudo de Prova de Conceito
16.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445407

RESUMO

Haematopoiesis is a paradigm of cell differentiation because of the wide variety and overwhelming number of mature blood cells produced daily. Under stress conditions, the organism must adapt to a boosted demand for blood cells. Chronic granulomatous disease (CGD) is a genetic disease caused by inactivating mutations that affect the phagocyte oxidase. Besides a defective innate immune system, CGD patients suffer from recurrent hyper-inflammation episodes, circumstances upon which they must face emergency haematopoiesis. The targeting of Cybb and Ncf1 genes have produced CGD animal models that are a useful surrogate when studying the pathophysiology and treatment of this disease. Here, we show that Cyba-/- mice spontaneously develop granuloma and, therefore, constitute a CGD animal model to complement the existing Cybb-/- and Ncf1-/- models. More importantly, we have analysed haematopoiesis in granuloma-bearing Cyba-/- mice. These animals showed a significant loss of weight, developed remarkable splenomegaly, bone marrow myeloid hyperplasia, and signs of anaemia. Haematological analyses showed a sharped decrease of B-cells and a striking development of myeloid cells in all compartments. Collectively, our results show that granuloma inflammatory lesions dramatically change haematopoiesis homeostasis. Consequently, we suggest that besides their defective innate immunity, the alteration of haematopoiesis homeostasis upon granuloma may contribute to the dismal outcome of CGD.


Assuntos
Linfócitos B/metabolismo , Grupo dos Citocromos b/genética , Doença Granulomatosa Crônica/patologia , Células Mieloides/patologia , NADPH Oxidases/genética , Animais , Sistemas CRISPR-Cas , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/imunologia , Humanos , Hiperplasia , Masculino , Camundongos , Células Mieloides/imunologia
17.
Thromb Haemost ; 121(9): 1193-1205, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33626581

RESUMO

RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbß3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbß3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.


Assuntos
Transtornos Plaquetários/genética , Plaquetas/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Mutação , Ativação Plaquetária/genética , Animais , Transtornos Plaquetários/sangue , Proteína 9 Associada à CRISPR/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/sangue , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Hemostasia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Via Secretória , Trombopoese
18.
Biology (Basel) ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557401

RESUMO

The constitutively active tyrosine-kinase BCR/ABL1 oncogene plays a key role in human chronic myeloid leukemia development and disease maintenance, and determines most of the features of this leukemia. For this reason, tyrosine-kinase inhibitors are the first-line treatment, offering most patients a life expectancy like that of an equivalent healthy person. However, since the oncogene stays intact, lifelong oral medication is essential, even though this triggers adverse effects in many patients. Furthermore, leukemic stem cells remain quiescent and resistance is observed in approximately 25% of patients. Thus, new therapeutic alternatives are still needed. In this scenario, the interruption/deletion of the oncogenic sequence might be an effective therapeutic option. The emergence of CRISPR (clustered regularly interspaced short palindromic repeats) technology can offer a definitive treatment based on its capacity to induce a specific DNA double strand break. Besides, it has the advantage of providing complete and permanent oncogene knockout, while tyrosine kinase inhibitors (TKIs) only ensure that BCR-ABL1 oncoprotein is inactivated during treatment. CRISPR/Cas9 cuts DNA in a sequence-specific manner making it possible to turn oncogenes off in a way that was not previously feasible in humans. This review describes chronic myeloid leukemia (CML) disease and the main advances in the genome-editing field by which it may be treated in the future.

19.
Haematologica ; 106(1): 142-153, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919083

RESUMO

The regulation of protein function by reversible oxidation is increasingly recognized as a key mechanism for the control of cellular signaling, modulating crucial biological processes such as cell differentiation. In this scenario, NADPH oxidases must occupy a prominent position. Our results show that hematopoietic stem and progenitor cells express three p22phox-dependent NADPH oxidases members (NOX1, NOX2 and NOX4). By deleting the p22phox coding gene (Cyba), here we have analyzed the importance of this family of enzymes during in vivo hematopoiesis. Cyba-/- mice show a myeloid bias, and an enrichment of hematopoietic stem cell populations. By means of hematopoietic transplant experiments we have also tried to dissect the specific role of the NADPH oxidases. While the absence of NOX1 or NOX2 provides a higher level of reconstitution, a lack of NOX4 rendered the opposite result, suggesting a functional specificity among the different NADPH oxidases. Cyba-/- cells showed a hampered activation of AKT1 and a sharp decrease in STAT5 protein. This is in line with the diminished response to IL-7 shown by our results, which could explain the overproduction of immunoglobulins observed in Cyba-/- mice.


Assuntos
Imunoglobulinas , NADPH Oxidases , Animais , Células-Tronco Hematopoéticas , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , NADPH Oxidases/genética , Espécies Reativas de Oxigênio
20.
Proc Natl Acad Sci U S A ; 117(48): 30509-30519, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199643

RESUMO

Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.


Assuntos
Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Folículo Piloso/metabolismo , Unhas/metabolismo , Animais , Biomarcadores , Ectoderma/embriologia , Folículo Piloso/embriologia , Humanos , Camundongos , Camundongos Knockout , Unhas/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA