Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 42(43): 3169-3181, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660182

RESUMO

Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N7-guanosine methylation (m7G) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells. Mechanistically, we find that m7G in tRNAs protects them from stress-induced cleavage and processing into 5' tRNA fragments. Our analyses reveal that the loss of tRNA m7G methylation activates stress response pathways, sensitising cancer cells to stress. Furthermore, we find that the loss of METTL1 reduces tumour growth and increases cytotoxic stress in vivo. Our study uncovers the role of m7G methylation of tRNAs in stress responses and highlights the potential of targeting METTL1 to sensitise cancer cells to chemotherapy.

2.
Mol Cancer ; 22(1): 119, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516825

RESUMO

Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.


Assuntos
Carcinogênese , Neoplasias da Próstata , Masculino , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias da Próstata/genética , Transcrição Gênica , Processamento Pós-Transcricional do RNA , Metiltransferases/genética
3.
Front Cell Dev Biol ; 10: 1026287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393850

RESUMO

C3G is a Rap1 guanine nucleotide exchange factor that controls platelet activation, aggregation, and the release of α-granule content. Transgenic expression of C3G in platelets produces a net proangiogenic secretome through the retention of thrombospondin-1. In a physiological context, C3G also promotes megakaryocyte maturation and proplatelet formation, but without affecting mature platelet production. The aim of this work is to investigate whether C3G is involved in pathological megakaryopoiesis, as well as its specific role in platelet mediated angiogenesis and tumor metastasis. Using megakaryocyte-specific C3G knockout and transgenic mouse models, we found that both C3G overexpression and deletion promoted platelet-mediated angiogenesis, induced by tumor cell implantation or hindlimb ischemia, through differential release of proangiogenic and antiangiogenic factors. However, only C3G deletion resulted in a higher recruitment of hemangiocytes from the bone marrow. In addition, C3G null expression enhanced thrombopoietin (TPO)-induced platelet production, associated with reduced TPO plasma levels. Moreover, after 5-fluorouracil-induced platelet depletion and rebound, C3G knockout mice showed a defective return to homeostatic platelet levels, indicating impaired platelet turnover. Mechanistically, C3G promotes c-Mpl ubiquitination by inducing Src-mediated c-Cbl phosphorylation and participates in c-Mpl degradation via the proteasome and lysosome systems, affecting TPO internalization. We also unveiled a positive role of platelet C3G in tumor cell-induced platelet aggregation, which facilitated metastatic cell homing and adhesion. Overall, these findings revealed that C3G plays a crucial role in platelet-mediated angiogenesis and metastasis, as well as in platelet level modulation in response to pathogenic stimuli.

4.
Proc Natl Acad Sci U S A ; 117(48): 30509-30519, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199643

RESUMO

Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.


Assuntos
Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Folículo Piloso/metabolismo , Unhas/metabolismo , Animais , Biomarcadores , Ectoderma/embriologia , Folículo Piloso/embriologia , Humanos , Camundongos , Camundongos Knockout , Unhas/embriologia
5.
FASEB J ; 34(3): 3969-3982, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944411

RESUMO

Unlike other species, prion disease has never been described in dogs even though they were similarly exposed to the bovine spongiform encephalopathy (BSE) agent. This resistance prompted a thorough analysis of the canine PRNP gene and the presence of a negatively charged amino acid residue in position 163 was readily identified as potentially fundamental as it differed from all known susceptible species. In the present study, the first transgenic mouse model expressing dog prion protein (PrP) was generated and challenged intracerebrally with a panel of prion isolates, none of which could infect them. The brains of these mice were subjected to in vitro prion amplification and failed to find even minimal amounts of misfolded prions providing definitive experimental evidence that dogs are resistant to prion disease. Subsequently, a second transgenic model was generated in which aspartic acid in position 163 was substituted for asparagine (the most common in prion susceptible species) resulting in susceptibility to BSE-derived isolates. These findings strongly support the hypothesis that the amino acid residue at position 163 of canine cellular prion protein (PrPC ) is a major determinant of the exceptional resistance of the canidae family to prion infection and establish this as a promising therapeutic target for prion diseases.


Assuntos
Ácido Aspártico/química , Ácido Glutâmico/química , Príons/química , Príons/patogenicidade , Animais , Bioensaio , Encéfalo/patologia , Cães , Camundongos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA