Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 261: 115837, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837673

RESUMO

The aggregation of wild-type transthyretin (TTR) and over 130 genetic TTR variants underlies a group of lethal disorders named TTR amyloidosis (ATTR). TTR chemical chaperones are molecules that hold great promise to modify the course of ATTR progression. In previous studies, we combined rational design and molecular dynamics simulations to generate a series of TTR selective kinetic stabilizers displaying exceptionally high affinities. In an effort to endorse the previously developed molecules with optimal pharmacokinetic properties, we conducted structural design optimization, leading to the development of PITB. PITB binds with high affinity to TTR, effectively inhibiting tetramer dissociation and aggregation of both the wild-type protein and the two most prevalent disease-associated TTR variants. Importantly, PITB selectively binds and stabilizes TTR in plasma, outperforming tolcapone, a drug currently undergoing clinical trials for ATTR. Pharmacokinetic studies conducted on mice confirmed that PITB exhibits encouraging pharmacokinetic properties, as originally intended. Furthermore, PITB demonstrates excellent oral bioavailability and lack of toxicity. These combined attributes position PITB as a lead compound for future clinical trials as a disease-modifying therapy for ATTR.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Camundongos , Animais , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Tolcapona/uso terapêutico , Simulação de Dinâmica Molecular
2.
J Med Chem ; 65(21): 14673-14691, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306808

RESUMO

Transthyretin amyloidosis (ATTR) is a group of fatal diseases described by the misfolding and amyloid deposition of transthyretin (TTR). Discovering small molecules that bind and stabilize the TTR tetramer, preventing its dissociation and subsequent aggregation, is a therapeutic strategy for these pathologies. Departing from the crystal structure of TTR in complex with tolcapone, a potent binder in clinical trials for ATTR, we combined rational design and molecular dynamics (MD) simulations to generate a series of novel halogenated kinetic stabilizers. Among them, M-23 displays one of the highest affinities for TTR described so far. The TTR/M-23 crystal structure confirmed the formation of unprecedented protein-ligand contacts, as predicted by MD simulations, leading to an enhanced tetramer stability both in vitro and in whole serum. We demonstrate that MD-assisted design of TTR ligands constitutes a new avenue for discovering molecules that, like M-23, hold the potential to become highly potent drugs to treat ATTR.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Pré-Albumina/química , Amiloide/metabolismo , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Tolcapona/uso terapêutico , Cinética
3.
Eur J Med Chem ; 238: 114514, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700596

RESUMO

The Ca2+/calmodulin-mediated phosphatase activity of calcineurin (CN) integrates calcium-mediated signaling with gene expression programs involved in the control of essential cellular processes in health and disease, such as the immune response and the pathogenesis of cancer progression and metastasis. In addition, CN is the target of the immunosuppressive drugs cyclosporine A (CsA) and FK-506 which are the cornerstone of immunosuppressant therapy. Unfortunately, long-term administration of these drugs results in severe side effects. Herein, we describe the design, synthesis and evaluation of new synthetic compounds that are capable of inhibiting NFATc activity in a dose-dependent manner, without interfering on CN phosphatase activity. These compounds were designed using the structure-based pharmacophore model of a peptide-derived PxIxIT sequence binding to calcineurin A subunit. Moreover, these compounds inhibit NFATc-dependent cytokine gene expression, secretion and proliferation of human T CD4+ cells. More importantly, compound 5a reduces tumor weight and shows a tendency to reduce tumor angiogenesis in an orthotopic immunocompetent mouse model of triple negative breast cancer, suggesting that 5a has tumor suppressor activity. These findings validate compound 5a as an agent with therapeutic activity against CN-NFATc and highlight its potential as a tool for drug development with therapeutic purposes.


Assuntos
Calcineurina , Neoplasias de Mama Triplo Negativas , Animais , Calcineurina/química , Calcineurina/genética , Calcineurina/metabolismo , Inibidores de Calcineurina , Ciclosporina/farmacologia , Humanos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA