Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6461, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833253

RESUMO

The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Actomiosina/genética , Mutação , Cardiomiopatias/genética , Placofilinas/genética , Placofilinas/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047426

RESUMO

Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer. We analyzed blood and thyroid tissue samples from two independent cohorts of patients undergoing thyroidectomy at the Hospital Universitario 12 de Octubre (Madrid, Spain). As expected, histological comparisons of thyroid cancer and hyperplasia revealed higher proliferation and apoptotic rates and enhanced vascular alterations in the former. Notably, they also revealed increased levels of membrane-bound phosphorylated AKT, suggestive of enhanced glycolysis, and alterations in mitochondrial sub-cellular distribution. Both characteristics are common metabolic adaptations in primary tumors. These data together with reduced mtDNA copy number and elevated levels of the mitochondrial antioxidant PRX3 in cancer tissue samples suggest the presence of mitochondrial oxidative stress. In plasma, cancer patients showed higher levels of cfDNA and mtDNA. Of note, mtDNA plasma levels inversely correlated with those in the tissue, suggesting that higher death rates were linked to lower mtDNA copy number. In PBMCs, cancer patients showed higher levels of PGC-1α, a positive regulator of mitochondrial function, but this increase was not associated with a corresponding induction of its target genes, suggesting a reduced activity in cancer patients. We also observed a significant difference in the PRDX3/PFKFB3 correlation at the gene expression level, between carcinoma and hyperplasia patients, also indicative of increased systemic metabolic stress in cancer patients. The correlation of mtDNA levels in tissue and PBMCs further stressed the interconnection between systemic and tumor metabolism. Evaluation of the mitochondrial gene ND1 in plasma, PBMCs and tissue samples, suggested that it could be a good biomarker for systemic oxidative metabolism, with ND1/mtDNA ratio positively correlating in PBMCs and tissue samples. In contrast, ND4 evaluation would be informative of tumor development, with ND4/mtDNA ratio specifically altered in the tumor context. Taken together, our data suggest that metabolic dysregulation in thyroid cancer can be monitored accurately in blood samples and might be exploited for the accurate discrimination of cancer from hyperplasia.


Assuntos
Mitocôndrias , Neoplasias da Glândula Tireoide , Humanos , Hiperplasia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Glicólise
3.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445154

RESUMO

The continuous relationship between blood pressure (BP) and cardiovascular events makes the distinction between elevated BP and hypertension based on arbitrary cut-off values for BP. Even mild BP elevations manifesting as high-normal BP have been associated with cardiovascular risk. We hypothesize that persistent elevated BP increases atherosclerotic plaque development. To evaluate this causal link, we developed a new mouse model of elevated BP based on adeno-associated virus (AAV) gene transfer. We constructed AAV vectors to support transfer of the hRenin and hAngiotensinogen genes. A single injection of AAV-Ren/Ang (1011 total viral particles) induced sustained systolic BP increase (130 ± 20 mmHg, vs. 110 ± 15 mmHg in controls; p = 0.05). In ApoE-/- mice, AAV-induced mild BP elevation caused larger atherosclerotic lesions evaluated by histology (10-fold increase vs. normotensive controls). In this preclinical model, atheroma plaques development was attenuated by BP control with a calcium channel blocker, indicating that a small increase in BP within a physiological range has a substantial impact on plaque development in a preclinical model of atherosclerosis. These data support that non-optimal BP represents a risk for atherosclerosis development. Earlier intervention in elevated BP may prevent or delay morbidity and mortality associated with atherosclerosis.


Assuntos
Aterosclerose/etiologia , Pressão Sanguínea , Hipertensão/complicações , Animais , Aterosclerose/fisiopatologia , Modelos Animais de Doenças , Humanos , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 10(1): 11636, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669659

RESUMO

N-methyl-2-pyrrolidone (NMP) is a versatile water-miscible polar aprotic solvent. It is used as a drug solubilizer and penetration enhancer in human and animal, yet its bioactivity properties remain elusive. Here, we report that NMP is a bioactive anti-inflammatory compound well tolerated in vivo, that shows efficacy in reducing disease in a mouse model of atherosclerosis. Mechanistically, NMP increases the expression of the transcription factor Kruppel-like factor 2 (KLF2). Monocytes and endothelial cells treated with NMP express increased levels of KLF2, produce less pro-inflammatory cytokines and adhesion molecules. We found that NMP attenuates monocyte adhesion to endothelial cells inflamed with tumor necrosis factor alpha (TNF-α) by reducing expression of adhesion molecules. We further show using KLF2 shRNA that the inhibitory effect of NMP on endothelial inflammation and subsequent monocyte adhesion is KLF2 dependent. Enhancing KLF2 expression and activity improves endothelial function, controls multiple genes critical for inflammation, and prevents atherosclerosis. Our findings demonstrate a consistent effect of NMP upon KLF2 activation and inflammation, biological processes central to atherogenesis. Our data suggest that inclusion of bioactive solvent NMP in pharmaceutical compositions to treat inflammatory disorders might be beneficial and safe, in particular to treat diseases of the vascular system, such as atherosclerosis.


Assuntos
Inflamação/tratamento farmacológico , Fatores de Transcrição Kruppel-Like/química , Pirrolidinonas/química , Solventes/química , Animais , Anti-Inflamatórios/farmacologia , Aorta/metabolismo , Apoptose , Aterosclerose , Adesão Celular , Linhagem Celular , DNA Complementar/metabolismo , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Biblioteca Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout para ApoE , Monócitos/citologia , Monócitos/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Am J Physiol Endocrinol Metab ; 318(2): E249-E261, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846369

RESUMO

Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27ß expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27ß expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27ß expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27ß. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27ß expression disappeared. Therefore, hepatic Cidec/Fsp27ß expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.


Assuntos
Dieta Ocidental/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas/genética , Animais , Linhagem Celular , Colesterol na Dieta/farmacologia , Feminino , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Orquiectomia , Ovariectomia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Mensageiro/biossíntese , Receptores de LDL/genética , Receptores de LDL/metabolismo , Caracteres Sexuais
6.
J Pathol ; 249(1): 65-78, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30982966

RESUMO

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α, PPARGC1A) regulates the expression of genes involved in energy homeostasis and mitochondrial biogenesis. Here we identify inactivation of the transcriptional regulator PGC-1α as a landmark for experimental nephrotoxic acute kidney injury (AKI) and describe the in vivo consequences of PGC-1α deficiency over inflammation and cell death in kidney injury. Kidney transcriptomic analyses of WT mice with folic acid-induced AKI revealed 1398 up- and 1627 downregulated genes. Upstream transcriptional regulator analyses pointed to PGC-1α as the transcription factor potentially driving the observed expression changes with the highest reduction in activity. Reduced PGC-1α expression was shared by human kidney injury. Ppargc1a-/- mice had spontaneous subclinical kidney injury characterized by tubulointerstitial inflammation and increased Ngal expression. Upon AKI, Ppargc1a-/- mice had lower survival and more severe loss of renal function, tubular injury, and reduction in expression of mitochondrial PGC-1α-dependent genes in the kidney, and an earlier decrease in mitochondrial mass than WT mice. Additionally, surviving Ppargc1a-/- mice showed higher rates of tubular cell death, compensatory proliferation, expression of proinflammatory cytokines, NF-κB activation, and interstitial inflammatory cell infiltration. Specifically, Ppargc1a-/- mice displayed increased M1 and decreased M2 responses and expression of the anti-inflammatory cytokine IL-10. In cultured renal tubular cells, PGC-1α targeting promoted spontaneous cell death and proinflammatory responses. In conclusion, PGC-1α inactivation is a key driver of the gene expression response in nephrotoxic AKI and PGC-1α deficiency promotes a spontaneous inflammatory kidney response that is magnified during AKI. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/metabolismo , Nefrite Intersticial/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Morte Celular , Linhagem Celular , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Ácido Fólico , Humanos , Mediadores da Inflamação/metabolismo , Rim/patologia , Rim/fisiopatologia , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nefrite Intersticial/genética , Nefrite Intersticial/patologia , Nefrite Intersticial/fisiopatologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais
7.
Antioxid Redox Signal ; 28(13): 1187-1208, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084443

RESUMO

AIMS: Sirtuin 1 (SIRT1) is a key player in liver physiology and a therapeutic target against hepatic inflammation. We evaluated the role of SIRT1 in the proinflammatory context and oxidative stress during acetaminophen (APAP)-mediated hepatotoxicity. RESULTS: SIRT1 protein levels decreased in human and mouse livers following APAP overdose. SIRT1-Tg mice maintained higher levels of SIRT1 on APAP injection than wild-type mice and were protected against hepatotoxicity by modulation of antioxidant systems and restrained inflammatory responses, with decreased oxidative stress, proinflammatory cytokine messenger RNA levels, nuclear factor kappa B (NFκB) signaling, and cell death. Mouse hepatocytes stimulated with conditioned medium of APAP-treated macrophages (APAP-CM) showed decreased SIRT1 levels; an effect mimicked by interleukin (IL)1ß, an activator of NFκB. This negative modulation was abolished by neutralizing IL1ß in APAP-CM or silencing p65-NFκB in hepatocytes. APAP-CM of macrophages from SIRT1-Tg mice failed to downregulate SIRT1 protein levels in hepatocytes. In vivo administration of the NFκB inhibitor BAY 11-7082 preserved SIRT1 levels and protected from APAP-mediated hepatotoxicity. INNOVATION: Our work evidenced the unique role of SIRT1 in APAP hepatoprotection by targeting oxidative stress and inflammation. CONCLUSION: SIRT1 protein levels are downregulated by IL1ß/NFκB signaling in APAP hepatotoxicity, resulting in inflammation and oxidative stress. Thus, maintenance of SIRT1 during APAP overdose by inhibiting NFκB might be clinically relevant. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16:293-296, 2012) with the following serving as open reviewers: Rafael de Cabo, Joaquim Ros, Kalervo Hiltunen, and Neil Kaplowitz. Antioxid. Redox Signal. 28, 1187-1208.


Assuntos
Acetaminofen/toxicidade , Inflamação/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Sirtuína 1/deficiência
8.
Free Radic Biol Med ; 93: 41-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26828021

RESUMO

UNLABELLED: Peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) is a regulator of mitochondrial metabolism and reactive oxygen species (ROS) that is known to play a relevant role in angiogenesis. AIMS: This study aims to investigate the role of ROS on the regulation by PGC-1α of angiogenesis. METHODS AND RESULTS: We found that endothelial cells (ECs) from mice deleted for PGC-1α display attenuated adhesion to the extracellular matrix, together with slower and reversible spreading. Structural analysis demonstrates unstable formation of focal adhesions, defective cytoskeleton reorganization in response to cellular matrix adhesion, cell migration and cell-cell adhesion. Confluent cultures showed also a reduction of membrane bound VE-cadherin, suggesting defective inter-cellular junction formation. Functional consequences included impaired directional migration, and enhanced tip phenotype in aortic explants sprouting assays. At the molecular level, PGC-1α-deleted ECs exhibit a constitutive activation of the vascular endothelial growth factor-A (VEGF-A) signaling pathway and a defective response to VEGF-A. All these alterations are partially reversed by administration of the antioxidant EUK-189. The contribution of mitochondrial ROS and NOX activation was confirmed using a mitochondrial targeted antioxidant (MitoTEMPO) and a NOX inhibitor (VAS-2870). These results indicate that elevated production of ROS in the absence of PGC-1α is a key factor in the alteration of the VEGF-A signaling pathway and the capacity of endothelial cells to form stable interactions with other endothelial cells and with the extracellular matrix. Our findings show that PGC-1α control of ROS homeostasis plays an important role in the control of endothelial response to VEGF-A.


Assuntos
Neovascularização Patológica/genética , Estresse Oxidativo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Antígenos CD/metabolismo , Antioxidantes/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Compostos Organometálicos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Salicilatos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Kidney Int ; 89(2): 399-410, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26535995

RESUMO

Studies of mitochondria-targeted nephroprotective agents suggest a key role of mitochondrial injury in AKI. Here we tested whether an improved perception of factors responsible for mitochondrial biogenesis may provide clues to novel therapeutic approaches to AKI. TWEAK is an inflammatory cytokine which is upregulated in AKI. Transcriptomic analysis of TWEAK-stimulated cultured murine tubular epithelial cells and folic acid-induced AKI in mice identified downregulation of peroxisome proliferator- activated receptor-γ coactivador-1α (PGC-1α) and its target genes (mitochondrial proteins Ndufs1, Sdha, and Tfam) as a shared feature. Neutralizing anti-TWEAK antibodies prevented the decrease in kidney PGC-1α and its targets during AKI. TWEAK stimulation decreased kidney PGC-1α expression in healthy mice and decreased expression of PGC-1α and its targets as well as mitochondrial membrane potential in cultured tubular cells. Adenoviral-mediated PGC-1α overexpression prevented TWEAK-induced downregulation of PGC-1α-dependent genes and the decrease in mitochondrial membrane potential. TWEAK promoted histone H3 deacetylation at the murine PGC-1α promoter. TWEAK-induced downregulation of PGC-1α was prevented by histone deacetylase or NF-κB inhibitors. Thus, TWEAK decreases PGC-1α and target gene expression in tubular cells in vivo and in vitro. Approaches that preserve mitochondrial function during kidney injury may be therapeutic for AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Células Cultivadas , Citocina TWEAK , Regulação para Baixo , Epigênese Genética , Feminino , Histona Desacetilases/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Biogênese de Organelas , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK
10.
Redox Biol ; 6: 51-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26184557

RESUMO

Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/metabolismo , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/patologia , Obesidade/genética , Obesidade/patologia , Oxirredução , Estresse Oxidativo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
11.
Antioxid Redox Signal ; 15(2): 325-37, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21338289

RESUMO

Translocated in liposarcoma (TLS) is a poorly characterized multifunctional protein involved in the genotoxic response. TLS regulates gene expression at several steps, including splicing and mRNA transport, possibly connecting transcriptional and posttranscriptional events. AIMS: In this study we aimed to idenfity molecular targets and regulatory partners of TLS. RESULTS AND INNOVATION: Here we report that TLS transcriptionally regulates the expression of oxidative stress protection genes. This regulation requires interaction with the transcriptional coactivator peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α), a master regulator of mitochondrial function that coordinately induces the expression of genes involved in detoxification of mitochondrial reactive oxygen species (ROS). Microarray gene expression analysis showed that TLS transcriptional activity is impaired in the absence of PGC-1α, and is thus largely dependent on PGC-1α. CONCLUSION: These results suggest the existence of a regulatory circuit linking the control of ROS detoxification to the coordinated cross-talk between oxidative metabolism and the cellular response to genomic DNA damage.


Assuntos
Regulação da Expressão Gênica/fisiologia , Estresse Oxidativo/genética , Proteína FUS de Ligação a RNA/genética , Transativadores/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA , Metabolismo Energético , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA