Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS One ; 19(2): e0297353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408066

RESUMO

Numerous pathogenic processes are mediated by short noncoding RNAs (sncRNA). Twenty percent of inflammatory bowel disease (IBD) patients are labelled as IBD unclassified (IBDU) at disease onset. Most IBDU patients are reclassified as Crohn's disease (CD) or ulcerative colitis (UC) within few years. Since the therapeutic methods for CD and UC differ, biomarkers that can forecast the categorization of IBDU into CD or UC are highly desired. Here, we investigated whether sncRNAs can predict CD or UC among IBDU patients. 35 IBDU patients who were initially diagnosed with IBDU were included in this retrospective investigation; of them, 12, 15, and 8 were reclassified into CD (IBDU-CD), UC (IBDU-UC), or remained as IBDU (IBDU-IBDU), respectively. Eight IBD patients, were included as references. SncRNA profiling on RNA from mucosal biopsies were performed using Affymetrix miRNA 4.0 array. Selected probe sets were validated using RT-qPCR. Among all patients and only adults, 306 and 499 probe sets respectively were differentially expressed between IBDU-CD and IBDU-UC. Six of the probe sets were evaluated by RT-qPCR, of which miR-182-5p, miR-451a and ENSG00000239080 (snoU13) together with age and sex resulted in an AUC of 78.6% (95% CI: 60-97) in discriminating IBDU-CD from IBDU-UC. Based on the three sncRNAs profile it is possible to predict if IBDU patients within 3 years will be reclassified as CD or UC. We showed that the expression profile of IBDU patients differ from that of definite CD or UC, suggesting that a subgroup of IBDU patients may compose a third unique IBD subtype.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , MicroRNAs , Pequeno RNA não Traduzido , Adulto , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Doença de Crohn/tratamento farmacológico , Estudos Retrospectivos , Doenças Inflamatórias Intestinais/tratamento farmacológico , MicroRNAs/genética , Biomarcadores
2.
Int J Cancer ; 151(1): 95-106, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182081

RESUMO

Genomic rearrangements in cancer cells can create gene fusions where the juxtaposition of two different genes leads to the production of chimeric proteins or altered gene expression through promoter-swapping. We have previously shown that fusion transcripts involving microRNA (miRNA) host genes contribute to deregulation of miRNA expression regardless of the protein-coding potential of these transcripts. Many different genes can also be used as 5' partners by a miRNA host gene in what we named recurrent miRNA-convergent fusions. Here, we have explored the properties of 5' partners in fusion transcripts that involve miRNA hosts in breast tumours from The Cancer Genome Atlas (TCGA). We hypothesised that firstly, 5' partner genes should belong to pathways and transcriptional programmes that reflect the tumour phenotype and secondly, there should be a selection for fusion events that shape miRNA expression to benefit the tumour cell through the known hallmarks of cancer. We found that the set of 5' partners in miRNA host fusions is non-random, with overrepresentation of highly expressed genes in pathways active in cancer including epithelial-to-mesenchymal transition, translational regulation and oestrogen signalling. Furthermore, many miRNAs were upregulated in samples with host gene fusions, including established oncogenic miRNAs such as mir-21 and the mir-106b~mir-93~mir-25 cluster. To the list of mechanisms for deregulation of miRNA expression, we have added fusion transcripts that change the promoter region. We propose that this adds material for genetic selection and tumour evolution in cancer cells and that miRNA host fusions can act as tumour 'drivers'.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Int J Cancer ; 146(12): 3343-3353, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32067223

RESUMO

Genomic rearrangements in cancer can join the sequences of two separate genes. Studies of such gene fusion events have mainly focused on identification of fusion proteins from the chimeric transcripts. We have previously investigated how fusions instead can affect the expression of intronic microRNA (miRNA) genes that are encoded within fusion gene partners. Here, we extend our analysis to small nucleolar RNAs (snoRNAs) that also are embedded within protein-coding or noncoding host genes. We found that snoRNA hosts are selectively enriched in fusion transcripts, like miRNA host genes, and that this enrichment is associated with all snoRNA classes. These structural changes may have functional consequences for the cell; proteins involved in the protein translation machinery are overrepresented among snoRNA host genes, a gene architecture assumed to be needed for closely coordinated expression of snoRNAs and host proteins. Our data indicate that this structure is frequently disrupted in cancer. We furthermore observed that snoRNA genes involved in fusions tend to associate with stronger promoters than the natural host, suggesting a mechanism that selects for snoRNA overexpression. In summary, we highlight a previously unexplored frequent structural change in cancer that affects important components of cellular physiology.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , RNA Mensageiro/genética , RNA Nucleolar Pequeno/genética , Elementos Alu/genética , Feminino , Humanos , Íntrons/genética , Regiões Promotoras Genéticas/genética , Estudos Prospectivos , RNA-Seq
4.
BMC Genomics ; 20(1): 503, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208318

RESUMO

BACKGROUND: Accurate classification of breast cancer using gene expression profiles has contributed to a better understanding of the biological mechanisms behind the disease and has paved the way for better prognostication and treatment prediction. RESULTS: We found that miRNA profiles largely recapitulate intrinsic subtypes. In the case of HER2-enriched tumors a small set of miRNAs including the HER2-encoded mir-4728 identifies the group with very high specificity. We also identified differential expression of the miR-99a/let-7c/miR-125b miRNA cluster as a marker for separation of the Luminal A and B subtypes. High expression of this miRNA cluster is linked to better overall survival among patients with Luminal A tumors. Correlation between the miRNA cluster and their precursor LINC00478 is highly significant suggesting that its expression could help improve the accuracy of present day's signatures. CONCLUSIONS: We show here that miRNA expression can be translated into mRNA profiles and that the inclusion of miRNA information facilitates the molecular diagnosis of specific subtypes, in particular the clinically relevant sub-classification of luminal tumors.


Assuntos
Neoplasias da Mama/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , MicroRNAs/genética , Neoplasias da Mama/classificação , Análise por Conglomerados , Estudos de Coortes , Humanos , Aprendizado de Máquina não Supervisionado
5.
Sci Rep ; 9(1): 3352, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833639

RESUMO

The HER2 oncogene and its truncated form p95HER2 play central roles in breast cancer. Here, we show that although HER2 and p95HER2 generally elicit qualitatively similar changes in miRNA profile in MCF-7 breast cancer cells, a subset of changes are distinct and p95HER2 shifts the miRNA profile towards the basal breast cancer subtype. High-throughput miRNA profiling was carried out 15, 36 and 60 h after HER2 or p95HER2 expression and central hits validated by RT-qPCR. miRNAs strongly regulated by p95HER2 yet not by HER2, included miR-221, miR-222, miR-503, miR-29a, miR-149, miR-196 and miR-361. Estrogen receptor-α (ESR1) expression was essentially ablated by p95HER2 expression, in a manner recapitulated by miR-221/-222 mimics. c-Myb family transcription factors MYB and MYBL1, but not MYBL2, were downregulated by p95HER2 and by miR-503 or miR-221/-222 mimics. MYBL1 3'UTR inhibition by miR-221/222 was lost by deletion of a single putative miR-221/222 binding sites. p95HER2 expression, or knockdown of either MYB protein, elicited upregulation of tissue inhibitor of matrix metalloprotease-2 (TIMP2). miR-221/222 and -503 mimics increased, and TIMP2 knockdown decreased, cell migration and invasion. A similar pathway was operational in T47D- and SKBr-3 cells. This work reveals important differences between HER2- and p95HER2- mediated miRNA changes in breast cancer cells, provides novel mechanistic insight into regulation of MYB family transcription factors by p95HER2, and points to a role for a miR-221/222- MYB family-TIMP2 axis in regulation of motility in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Regulação para Baixo/fisiologia , MicroRNAs/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptor ErbB-2/fisiologia , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7 , Isoformas de Proteínas/química , Receptor ErbB-2/química
6.
Nat Commun ; 8(1): 788, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983113

RESUMO

Studies of fusion genes have mainly focused on the formation of fusions that result in the production of hybrid proteins or, alternatively, on promoter-switching events that put a gene under the control of aberrant signals. However, gene fusions may also disrupt the transcriptional control of genes that are encoded in introns downstream of the breakpoint. By ignoring structural constraints of the transcribed fusions, we highlight the importance of a largely unexplored function of fusion genes. Here, we show, using breast cancer as an example, that miRNA host genes are specifically enriched in fusion genes and that many different, low-frequency, 5' partners may deregulate the same miRNA irrespective of the coding potential of the fusion transcript. These results indicate that the concept of recurrence, defined by the rate of functionally important aberrations, needs to be revised to encompass convergent fusions that affect a miRNA independently of transcript structure and protein-coding potential.Fusion gene research traditionally focuses on fusions that result in hybrid proteins or promoter switching events. Here, the authors demonstrate enrichment of fusions in miRNA host genes in breast cancer, highlighting that disparate fusions could have convergent impact on miRNA.


Assuntos
Neoplasias da Mama/genética , Fusão Gênica/genética , MicroRNAs/genética , RNA Mensageiro/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Íntrons , Regiões Promotoras Genéticas
7.
Biotechniques ; 63(2): 57-64, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803540

RESUMO

MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/economia , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/economia , Transcriptoma
8.
Sci Rep ; 6: 35664, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752128

RESUMO

We previously reported that the human HER2 gene encodes the intronic microRNA mir-4728, which is overexpressed together with its oncogenic host gene and may act independently of the HER2 receptor. More recently, we also reported that the oncogenic miR-21-5p is regulated by 3' tailing and trimming by the non-canonical poly(A) polymerase PAPD5 and the ribonuclease PARN. Here we demonstrate a dual function for the HER2 locus in upregulation of miR-21-5p; while HER2 signalling activates transcription of mir-21, miR-4728-3p specifically stabilises miR-21-5p through inhibition of PAPD5. Our results establish a new and unexpected oncogenic role for the HER2 locus that is not currently being targeted by any anti-HER2 therapy.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , RNA Nucleotidiltransferases/metabolismo , Receptor ErbB-2/genética , Carcinogênese , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Regulação para Cima
9.
Oncotarget ; 6(30): 29224-39, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26317550

RESUMO

To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered expression between isogenic metastasizing and non-metastasizing cancer cells, with miR-155 being the most differentially expressed. Highly metastatic mesenchymal-like CL16 cancer cells showed very low miR-155 expression, and miR-155 overexpression in these cells lead to significantly decreased tumor burden in lungs when injected intravenously in immunodeficient mice. Our experiments addressing the underlying mechanism of the altered tumor burden revealed that miR-155-overexpressing CL16 cells were less invasive than CL16 control cells in vitro, while miR-155 overexpression had no effect on cancer cell proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4,000 proteins were identified, of which 92 were consistently differentially expressed. Network analysis revealed that the altered proteins were associated with cellular functions such as movement, growth and survival as well as cell-to-cell signaling and interaction. Downregulation of the three metastasis-associated proteins ALDH1A1, PIR and PDCD4 in miR-155-overexpressing tumors was validated by immunohistochemistry. Our results demonstrate that miR-155 inhibits the ability of cancer cells to extravasate and/or colonize at distant organs and brings additional insight into the complexity of miR-155 regulation in metastatic seeding.


Assuntos
Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , MicroRNAs/genética , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Dioxigenases , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Espectrometria de Massas , Camundongos , Camundongos SCID , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Mapas de Interação de Proteínas , Proteômica/métodos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Retinal Desidrogenase , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
RNA Biol ; 12(8): 787-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121563

RESUMO

MicroRNAs (miRNAs) are important regulators of gene function and manipulation of miRNAs is a central component of basic research. Modulation of gene expression by miRNA gain-of-function can be based on different approaches including transfection with miRNA mimics; artificial, chemically modified miRNA-like small RNAs. These molecules are intended to mimic the function of a miRNA guide strand while bypassing the maturation steps of endogenous miRNAs. Due to easy accessibility through commercial providers this approach has gained popularity, and accuracy is often assumed without prior independent testing. Our in silico analysis of over-represented sequence motifs in microarray expression data and sequencing of AGO-associated small RNAs indicate, however, that miRNA mimics may be associated with considerable side-effects due to the unwanted activity of the miRNA mimic complementary strand.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , MicroRNAs/genética , Motivos de Nucleotídeos/genética , Proteínas Argonautas/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Humanos , MicroRNAs/metabolismo , RNA/genética , RNA/metabolismo
11.
Cell Oncol (Dordr) ; 37(3): 215-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25027758

RESUMO

PURPOSE: Therapeutic decisions in breast cancer are increasingly guided by prognostic and predictive biomarkers. Non-protein-coding microRNAs (miRNAs) have recently been found to be deregulated in breast cancers and, in addition, to be correlated with several clinico-pathological features. One of the most consistently up-regulated miRNAs is miR-21. Here, we specifically searched for differentially expressed miRNAs in high-risk breast cancer patients as compared to low-risk breast cancer patients. In the same patients, we also compared miR-21 expression with the expression of its presumed target PTEN. METHODS: Both microarray and RT-qPCR techniques were used to assess miRNA expression levels in lymph node-positive and -negative human invasive ductal carcinoma tissues. Simultaneously, PTEN protein expression levels were assessed using immunohistochemistry. RESULTS: miR-486-5p and miR-139-5p were found to be down-regulated in patients with lymph node metastases, whereas miR-21 was found to be up-regulated in patients with a positive lymph node status. miR-21 expression levels were found to significantly correlate with tumour size (r = 0.403, p = 0.009; Spearman's rank), whereas no relation was found between miR-21 and PTEN expression levels (Kruskal-Wallis test). CONCLUSION: Down-regulation of miR-486-5p and miR-139-5p, in conjunction with up-regulation of miR-21, may represent a useful signature for the identification of high-risk breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Idoso , Western Blotting , Neoplasias da Mama/classificação , Neoplasias da Mama/diagnóstico , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Regulação para Cima
12.
Proc Natl Acad Sci U S A ; 111(31): 11467-72, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049417

RESUMO

Next-generation sequencing experiments have shown that microRNAs (miRNAs) are expressed in many different isoforms (isomiRs), whose biological relevance is often unclear. We found that mature miR-21, the most widely researched miRNA because of its importance in human disease, is produced in two prevalent isomiR forms that differ by 1 nt at their 3' end, and moreover that the 3' end of miR-21 is posttranscriptionally adenylated by the noncanonical poly(A) polymerase PAPD5. PAPD5 knockdown caused an increase in the miR-21 expression level, suggesting that PAPD5-mediated adenylation of miR-21 leads to its degradation. Exoribonuclease knockdown experiments followed by small-RNA sequencing suggested that PARN degrades miR-21 in the 3'-to-5' direction. In accordance with this model, microarray expression profiling demonstrated that PAPD5 knockdown results in a down-regulation of miR-21 target mRNAs. We found that disruption of the miR-21 adenylation and degradation pathway is a general feature in tumors across a wide range of tissues, as evidenced by data from The Cancer Genome Atlas, as well as in the noncancerous proliferative disease psoriasis. We conclude that PAPD5 and PARN mediate degradation of oncogenic miRNA miR-21 through a tailing and trimming process, and that this pathway is disrupted in cancer and other proliferative diseases.


Assuntos
Adenina/metabolismo , MicroRNAs/metabolismo , Neoplasias/genética , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA , Sequência de Bases , Citosina/metabolismo , Exorribonucleases/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , MicroRNAs/química , MicroRNAs/genética , Modelos Biológicos , Dados de Sequência Molecular , Neoplasias/patologia , Conformação de Ácido Nucleico , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ribonuclease III/metabolismo
13.
PLoS One ; 9(5): e97200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24828673

RESUMO

Since the early 1980s remarkable progress has been made in understanding the role of the HER2 locus in carcinogenesis, but many details of its regulatory network are still elusive. We recently reported the finding of 367 new human microRNA (miRNA) genes of which one, mir-4728, is encoded in an intron of the HER2 gene. Here, we confirm that the HER2 oncogene is a bi-functional locus encoding the membrane receptor and a functional miRNA gene. We further show that miR-4728-3p has alternative functionalities depending on the region used for interaction with its target; the canonical seed between nucleotides 2-8 or a novel, more internal seed shifted to nucleotides 6-12. Analysis of public data shows that this internal seed region, although rare compared to the far more abundant canonical 2-8 seed interaction, can also direct targeted down-regulation by other miRNAs. Through the internal seed, miR-4728-3p regulates expression of estrogen receptor alpha, an interaction that would have remained undetected if classic rules for miRNA-target interaction had been applied. In summary, we present here an alternative mode of miRNA regulation and demonstrate this dual function of the HER2 locus, linking the two major biomarkers in breast cancer.


Assuntos
Receptor alfa de Estrogênio/genética , MicroRNAs/genética , Receptor ErbB-2/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Nucleotídeos/genética
14.
J Mol Diagn ; 16(1): 106-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211363

RESUMO

Carcinomas of unknown primary origin constitute 3% to 5% of all newly diagnosed metastatic cancers, with the primary source difficult to classify with current histological methods. Effective cancer treatment depends on early and accurate identification of the tumor; patients with metastases of unknown origin have poor prognosis and short survival. Because miRNA expression is highly tissue specific, the miRNA profile of a metastasis may be used to identify its origin. We therefore evaluated the potential of miRNA profiling to identify the primary tumor of known metastases. Two hundred eight formalin-fixed, paraffin-embedded samples, representing 15 different histologies, were profiled on a locked nucleic acid-enhanced microarray platform, which allows for highly sensitive and specific detection of miRNA. On the basis of these data, we developed and cross-validated a novel classification algorithm, least absolute shrinkage and selection operator, which had an overall accuracy of 85% (CI, 79%-89%). When the classifier was applied on an independent test set of 48 metastases, the primary site was correctly identified in 42 cases (88% accuracy; CI, 75%-94%). Our findings suggest that miRNA expression profiling on paraffin tissue can efficiently predict the primary origin of a tumor and may provide pathologists with a molecular diagnostic tool that can improve their capability to correctly identify the origin of hitherto unidentifiable metastatic tumors and, eventually, enable tailored therapy.


Assuntos
MicroRNAs/genética , Técnicas de Diagnóstico Molecular/métodos , Neoplasias Primárias Desconhecidas/classificação , Neoplasias Primárias Desconhecidas/genética , Análise de Sequência de RNA/métodos , Algoritmos , Sequência de Bases , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Primárias Desconhecidas/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Especificidade de Órgãos/genética , Inclusão em Parafina
15.
Clin Cancer Res ; 18(18): 4919-30, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22850566

RESUMO

PURPOSE: miRNAs play a prominent role in a variety of physiologic and pathologic biologic processes, including cancer. For rectal cancers, only limited data are available on miRNA expression profiles, whereas the underlying genomic and transcriptomic aberrations have been firmly established. We therefore, aimed to comprehensively map the miRNA expression patterns of this disease. EXPERIMENTAL DESIGN: Tumor biopsies and corresponding matched mucosa samples were prospectively collected from 57 patients with locally advanced rectal cancers. Total RNA was extracted, and tumor and mucosa miRNA expression profiles were subsequently established for all patients. The expression of selected miRNAs was validated using semi-quantitative real-time PCR. RESULTS: Forty-nine miRNAs were significantly differentially expressed (log(2)-fold difference >0.5 and P < 0.001) between rectal cancer and normal rectal mucosa. The predicted targets for these miRNAs were enriched for the following pathways: Wnt, TGF-beta, mTOR, insulin, mitogen-activated protein kinase, and ErbB signaling. Thirteen of these 49 miRNAs seem to be rectal cancer-specific, and have not been previously reported for colon cancers: miR-492, miR-542-5p, miR-584, miR-483-5p, miR-144, miR-2110, miR-652, miR-375, miR-147b, miR-148a, miR-190, miR-26a/b, and miR-338-3p. Of clinical impact, miR-135b expression correlated significantly with disease-free and cancer-specific survival in an independent multicenter cohort of 116 patients. CONCLUSION: This comprehensive analysis of the rectal cancer miRNAome uncovered novel miRNAs and pathways associated with rectal cancer. This information contributes to a detailed view of this disease. Moreover, the identification and validation of miR-135b may help to identify novel molecular targets and pathways for therapeutic exploitation.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Retais/genética , Análise por Conglomerados , Neoplasias do Colo/genética , Redes Reguladoras de Genes , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Prognóstico , Neoplasias Retais/mortalidade , Neoplasias Retais/patologia , Reto/metabolismo , Reto/patologia , Reprodutibilidade dos Testes
16.
PLoS One ; 7(5): e36170, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22623953

RESUMO

PURPOSE: Despite the benefits of estrogen receptor (ER)-targeted endocrine therapies in breast cancer, many tumors develop resistance. MicroRNAs (miRNAs) have been suggested as promising biomarkers and we here evaluated whether a miRNA profile could be identified, sub-grouping ER+ breast cancer patients treated with adjuvant Tamoxifen with regards to probability of recurrence. EXPERIMENTAL DESIGN: Global miRNA analysis was performed on 152 ER+ primary tumors from high-risk breast cancer patients with an initial discovery set of 52 patients, followed by two independent test sets (N = 60 and N = 40). All patients had received adjuvant Tamoxifen as mono-therapy (median clinical follow-up: 4.6 years) and half had developed distant recurrence (median time-to-recurrence: 3.5 years). MiRNA expression was examined by unsupervised hierarchical clustering and supervised analysis, including clinical parameters as co-variables. RESULTS: The discovery set identified 10 highly significant miRNAs that discriminated between the patient samples according to outcome. However, the subsequent two independent test sets did not confirm the predictive potential of these miRNAs. A significant correlation was identified between miR-7 and the tumor grade. Investigation of the microRNAs with the most variable expression between patients in different runs yielded a list of 31 microRNAs, eight of which are associated with stem cell characteristics. CONCLUSIONS: Based on the large sample size, our data strongly suggests that there is no single miRNA profile predictive of outcome following adjuvant Tamoxifen treatment in a broad cohort of ER+ breast cancer patients. We identified a sub-group of Tamoxifen-treated breast cancer patients with miRNA-expressing tumors associated with cancer stem cell characteristics.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Tamoxifeno/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Receptores de Estrogênio/metabolismo , Tamoxifeno/metabolismo
17.
Breast Cancer Res Treat ; 134(1): 207-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22294488

RESUMO

Metastases are the major cause of cancer-related deaths, but the mechanisms of the metastatic process remain poorly understood. In recent years, the involvement of microRNAs (miRNAs) in cancer has become apparent, and the objective of this study was to identify miRNAs associated with breast cancer progression. Global miRNA expression profiling was performed on 47 tumor samples from 14 patients with paired samples from primary breast tumors and corresponding lymph node and distant metastases using LNA-enhanced miRNA microarrays. The identified miRNA expression alterations were validated by real-time PCR, and tissue distribution of the miRNAs was visualized by in situ hybridization. The patients, in which the miRNA profile of the primary tumor and corresponding distant metastasis clustered in the unsupervised cluster analysis, showed significantly shorter intervals between the diagnosis of the primary tumor and distant metastasis (median 1.6 years) compared to those that did not cluster (median 11.3 years) (p<0.003). Fifteen miRNAs were identified that were significantly differentially expressed between primary tumors and corresponding distant metastases, including miR-9, miR-219-5p and four of the five members of the miR-200 family involved in epithelial-mesenchymal transition. Tumor expression of miR-9 and miR-200b were confirmed using in situ hybridization, which also verified higher expression of these miRNAs in the distant metastases versus corresponding primary tumors. Our results demonstrate alterations in miRNA expression at different stages of disease progression in breast cancer, and suggest a direct involvement of the miR-200 family and miR-9 in the metastatic process.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/metabolismo , Expressão Gênica , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Adenocarcinoma/secundário , Adulto , Idoso , Análise de Variância , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Caderinas/metabolismo , Análise por Conglomerados , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização In Situ , Neoplasias Hepáticas/secundário , Metástase Linfática , MicroRNAs/genética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Transcriptoma , Homeobox 1 de Ligação a E-box em Dedo de Zinco
18.
Mol Pharm ; 8(6): 2055-62, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21899346

RESUMO

Multidrug resistance (MDR) poses a major obstacle to successful chemotherapeutic treatment of cancer, and often involves multiple genes, which may be regulated post-transcriptionally by microRNAs (miRNAs). The purpose of the present study was therefore to identify any resistance-associated changes in miRNA expression in a sensitive and five increasingly drug-resistant Ehrlich ascites tumor (EAT) cell lines, representing different steps in the development of resistance. We used an LNA-enhanced microarray platform to study the global miRNA expression profiles in the six murine EAT cell lines, and identified growth-, hypoxia-, and resistance-specific miRNA patterns. Among the differentially expressed miRNAs, we found the two clusters miR-183∼miR-96∼miR-182 and miR-200b∼miR-200a∼miR-429 as well as miR-141 to be consistently upregulated in the MDR cell lines, while miR-125b-5p and the two clusters miR-30d∼miR-30b and miR-23b∼miR-27b∼miR-24-1 were downregulated in most of the resistant EAT cells. Several of the target genes for these miRNAs-including Zeb1/Zeb2 and members of the Fox gene family-could contribute to the drug-resistant phenotype, although we did not find that the degree of resistance was directly correlated to any specific changes in miRNA expression. Probably, the observed miRNA expression patterns reflect the underlying genomic instability of the tumor cells, and further studies are needed to explore how the highly complex regulatory miRNA networks contribute to the development of MDR.


Assuntos
Carcinoma de Ehrlich/genética , Carcinoma de Ehrlich/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Blood ; 118(22): 5891-900, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865341

RESUMO

Cutaneous T-cell lymphomas (CTCLs) are the most frequent primary skin lymphomas. Nevertheless, diagnosis of early disease has proven difficult because of a clinical and histologic resemblance to benign inflammatory skin diseases. To address whether microRNA (miRNA) profiling can discriminate CTCL from benign inflammation, we studied miRNA expression levels in 198 patients with CTCL, peripheral T-cell lymphoma (PTL), and benign skin diseases (psoriasis and dermatitis). Using microarrays, we show that the most induced (miR-326, miR-663b, and miR-711) and repressed (miR-203 and miR-205) miRNAs distinguish CTCL from benign skin diseases with > 90% accuracy in a training set of 90 samples and a test set of 58 blinded samples. These miRNAs also distinguish malignant and benign lesions in an independent set of 50 patients with PTL and skin inflammation and in experimental human xenograft mouse models of psoriasis and CTCL. Quantitative (q)RT-PCR analysis of 103 patients with CTCL and benign skin disorders validates differential expression of 4 of the 5 miRNAs and confirms previous reports on miR-155 in CTCL. A qRT-PCR-based classifier consisting of miR-155, miR-203, and miR-205 distinguishes CTCL from benign disorders with high specificity and sensitivity, and with a classification accuracy of 95%, indicating that miRNAs have a high diagnostic potential in CTCL.


Assuntos
Perfilação da Expressão Gênica , Linfoma Cutâneo de Células T/diagnóstico , Linfoma Cutâneo de Células T/genética , MicroRNAs/genética , Animais , Células Cultivadas , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Análise em Microsséries , Prognóstico , Psoríase/patologia , Transplante Heterólogo
20.
Mol Immunol ; 48(15-16): 2087-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21813181

RESUMO

Recently it has become clear that interferon (IFN)-α, a type I interferon produced rapidly in response to infection, not only plays a key role in innate immunity, but also promotes adaptive immune responses by influencing the production or function of other cytokines. During infections IFN-α fosters the production of IL-15, which plays a pivotal role in the development, survival and function of NK cells and recruitment and activation of T cells. Since these two cytokines exert overlapping functions during infections, this investigation was undertaken to study the priming effect of IFN-α on the effect of IL-15 on human T and NK cells. We show that IFN-α induces an increased expression of IL-15Rα in human activated peripheral T cells, and in CD8(+) and CD4(+) T-cell lines. Functionally, the IFN-α-enhanced IL-15Rα expression resulted in an enhanced IL-15-mediated phosphorylation of STAT5 and STAT3 followed by a further increase in IL-15Rα expression. Moreover, IFN-α significantly increased the IL-15-induced cytotoxic activity of freshly isolated T and NK cells. Taken together, our data show that IFN-α boosts signaling and functional effects of IL-15, at least in part by fostering the increased IL-15R expression, thus add new facet to the emerging role of IFN-α as an important primer of adaptive immune responses.


Assuntos
Interferon-alfa/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Western Blotting , Separação Celular , Células Cultivadas , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Humanos , Interferon-alfa/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Teste de Cultura Mista de Linfócitos , Receptores de Interleucina-15/imunologia , Receptores de Interleucina-15/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA