Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570651

RESUMO

Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.


Assuntos
Quitosana , Nanopartículas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Candida , Cinnamomum zeylanicum/química , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Candida albicans , Nanopartículas/química
2.
Sci Rep ; 12(1): 19814, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396702

RESUMO

To explore a novel kind of green composite material having excellent antibacterial, antifungal ability and specific-targeting capability for pharmaceutical uses, a novel kind of bio-composite was prepared using sodium purified clay as carrier of Caraway essential oil (CEO). Gas chromatography-mass spectroscopy (GC-MS) analyses of CEO reveals that Carvone (68.30%) and Limonene (22.54%) are the two major components with a minimum inhibitory concentration (MIC) value equal to 125 mg/mL against Staphylococcus (S) aureus bacteria and Candida albicans fungi. Clay from Zaghouan was purified and characterized by X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and N2 adsorption-desorption (BET method). Results obtained by chromatograph equipped with a flame ionization detector (GC-FID) show that the concentration of 130 mg/mL of essential oil and 5 h of contact with the purified clay are the optimal conditions for the bio-hybrid formation. The pseudo-second-order model can describe the kinetic study of the adsorption of Carvone and Limonene on sodium montmorillonite, and the adsorption isotherms have been established to the Langmuir type. Limonene registers a maximum adsorption value equal to 3.05 mg/g of clay however Carvone register the higher amount of adsorption (19.98 mg/g) according to its polarity and the abundance of this compound in the crude CEO. X-ray diffraction, Fourier transformed infrared spectroscopy, elemental analyses (CHN) and X-ray fluorescence characterization valid the success adsorption of CEO in sodium montmorillonite surface. The purified clay/CEO hybrid (purified clay/CEO) combined the advantages of both the clay and the essential oil used in exerting the antibacterial and antifungal activity, and thus, the composite has a double antibacterial and antifungal activity compared to the separately uses of inactive clay and CEO, suggesting the great potential application in pharmaceutical treatments.


Assuntos
Carum , Óleos Voláteis , Argila/química , Bentonita/química , Adsorção , Limoneno , Óleos Voláteis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antifúngicos , Antibacterianos , Preparações Farmacêuticas , Sódio
3.
Respirol Case Rep ; 8(3): e00535, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076553

RESUMO

Anomalies of the aortic arch associated with Kommerell diverticulum (KD) are rare congenital malformations. Symptomatic thoracic vascular rings presenting in adults are rare. We report a case of a 39-year-old woman who was diagnosed with uncontrolled asthma. She was complaining of worsening respiratory symptoms with dysphagia. Imaging studies and preoperative findings concluded to type II congenital anomaly of the aortic arch or Neuhauser's anomaly: a right-sided aortic arch with aberrant left subclavian artery, tracheoesophageal compression by KD and ligamentum arteriosum (LA). This compression was relieved by the resection of the LA and KD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA