Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Oncogenesis ; 13(1): 11, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429288

RESUMO

Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.

2.
Biomed Pharmacother ; 173: 116397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479181

RESUMO

Angiosarcoma is a rare soft tissue sarcoma originating from endothelial cells. Given that current treatments for advanced disease have shown limited efficacy, alternative therapies need to be identified. In rare diseases, patient-derived cell models are crucial for screening anti-tumour activity. In this study, cell line models were characterised in 2D and 3D cultures. The cell lines' growth, migration and invasion capabilities were explored, confirming them as useful tools for preclinical angiosarcoma studies. By screening a drug library, we identified potentially effective compounds: 8-amino adenosine impacted cell growth and inhibited migration and invasion at considerably low concentrations as a single agent. No synergistic effect was detected when combining with paclitaxel, gemcitabine or doxorubicin. These results suggest that this compound could be a potentially useful drug in the treatment of AGS.


Assuntos
Hemangiossarcoma , Sarcoma , Humanos , Hemangiossarcoma/tratamento farmacológico , Células Endoteliais/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sarcoma/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
3.
Nat Protoc ; 19(1): 60-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996540

RESUMO

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos
4.
NPJ Precis Oncol ; 6(1): 94, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575299

RESUMO

The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.

5.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34472587

RESUMO

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of Minimal Information for Chemosensitivity Assays (MICHA), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies as well as six recently conducted COVID-19 studies. With the MICHA web server and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

6.
Cancer Discov ; 12(2): 388-401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789538

RESUMO

We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Técnicas de Apoio para a Decisão , Leucemia Mieloide Aguda/tratamento farmacológico , Equipe de Assistência ao Paciente , Medicina de Precisão , Feminino , Finlândia , Humanos , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Análise de Sobrevida
7.
Sci Rep ; 11(1): 14755, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285300

RESUMO

Conventional chemotherapeutic agents are nonselective, often resulting in severe side effects and the development of resistance. Therefore, new molecular-targeted therapies are urgently needed to be integrated into existing treatment regimens. Here, we performed a high-throughput compound screen to identify a synergistic interaction between ionizing radiation and 396 anticancer compounds. The assay was run using five human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) cell lines cultured on the human tumor-derived matrix Myogel. Our screen identified several compounds with strong synergistic and antagonistic effects, which we further investigated using multiple irradiation doses. Navitoclax, which emerged as the most promising radiosensitizer, exhibited synergy with irradiation regardless of the p53 mutation status in all 13 HNSCC cell lines. We performed a live cell apoptosis assay for two representative HNSCC cell lines to examine the effects of navitoclax and irradiation. As a single agent, navitoclax reduced proliferation and induced apoptosis in a dose-dependent manner, whereas the navitoclax-irradiation combination arrested cell cycle progression and resulted in substantially elevated apoptosis. Overall, we demonstrated that combining navitoclax with irradiation resulted in synergistic in vitro antitumor effects in HNSCC cell lines, possibly indicating the therapeutic potential for HNSCC patients.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Radiação Ionizante , Sulfonamidas/farmacologia , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Ensaios de Triagem em Larga Escala , Papillomavirus Humano 16/fisiologia , Humanos , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Sulfonamidas/uso terapêutico , Proteína Supressora de Tumor p53/genética
8.
Cancers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200751

RESUMO

Deregulated miRNA expression has been suggested in several stages of breast cancer pathogenesis. We have studied the miR-30 family, in particular miR-30d, in relation to breast cancer patient survival and treatment outcomes. With tumor specimens from 1238 breast cancer patients, we analyzed the association of miR-30d expression with tumor characteristics with the 5-year occurrence of breast cancer-specific death or distant metastasis (BDDM), and with 10-year breast cancer survival (BCS). We conducted a two-stage drug-screen to investigate the impact of miR-30 family members (miR-30a-30e) on sensitivity to doxorubicin and lapatinib in six breast cancer cell lines HCC1937, HCC1954, MDA-MB-361, MCF7, MDA-MB-436 and CAL-120, using drug sensitivity scores (DSS) to compare the miR-30 family mimics to their specific inhibitors. The study was complemented with Ingenuity Pathway Analysis (IPA) with the METABRIC data. We found that while high miR-30d expression is typical for aggressive tumors, it predicts better metastasis-free (pBDDM = 0.035, HR = 0.63, 95% CI = 0.4-0.9) and breast cancer-specific survival (pBCS = 0.018, HR = 0.61, 95% CI = 0.4-0.9), especially in HER2-positive (pBDDM = 0.0009), ER-negative (pBDDM = 0.003), p53-positive (pBDDM = 0.011), and highly proliferating (pBDDM = 0.0004) subgroups, and after adjuvant chemotherapy (pBDDM = 0.035). MiR-30d predicted survival independently of standard prognostic markers (pBDDM = 0.0004). In the drug-screening test, the miR-30 family sensitized the HER2-positive HCC1954 cell line to lapatinib (p < 10-2) and HCC1937, MDA-MB-361, MDA-MB-436 and CAL120 to doxorubicin (p < 10-4) with an opposite impact on MCF7. According to the pathway analysis, the miR-30 family has a suppressive effect on cell motility and metastasis in breast cancer. Our results suggest prognostic and predictive potential for the miR-30 family, which warrants further investigation.

9.
bioRxiv ; 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33300000

RESUMO

Chemosensitivity assays are commonly used for preclinical drug discovery and clinical trial optimization. However, data from independent assays are often discordant, largely attributed to uncharacterized variation in the experimental materials and protocols. We report here the launching of MICHA (Minimal Information for Chemosensitivity Assays), accessed via https://micha-protocol.org. Distinguished from existing efforts that are often lacking support from data integration tools, MICHA can automatically extract publicly available information to facilitate the assay annotation including: 1) compounds, 2) samples, 3) reagents, and 4) data processing methods. For example, MICHA provides an integrative web server and database to obtain compound annotation including chemical structures, targets, and disease indications. In addition, the annotation of cell line samples, assay protocols and literature references can be greatly eased by retrieving manually curated catalogues. Once the annotation is complete, MICHA can export a report that conforms to the FAIR principle (Findable, Accessible, Interoperable and Reusable) of drug screening studies. To consolidate the utility of MICHA, we provide FAIRified protocols from five major cancer drug screening studies, as well as six recently conducted COVID-19 studies. With the MICHA webserver and database, we envisage a wider adoption of a community-driven effort to improve the open access of drug sensitivity assays.

10.
Biomolecules ; 10(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992842

RESUMO

Aberrant hyperactivation of nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) is a common event in many tumour types and associates with resistance to therapy and poor patient prognosis; however, its relevance in colorectal tumours is not well-established. Measuring the expression of surrogate genes for NRF2 activity in silico, in combination with validation in patients' samples, we show that the NRF2 pathway is upregulated in colorectal tumours and that high levels of nuclear NRF2 correlate with a poor patient prognosis. These results highlight the need to overcome the protection provided by NRF2 and present an opportunity to selectively kill cancer cells with hyperactive NRF2. Exploiting the CRISPR/Cas9 technology, we generated colorectal cancer cell lines with hyperactive NRF2 and used them to perform a drug screen. We identified AT9283, an Aurora kinase inhibitor, for its selectivity towards killing cancer cells with hyperactive NRF2 as a consequence to either genetic or pharmacological activation. Our results show that hyperactivation of NRF2 in colorectal cancer cells might present a vulnerability that could potentially be therapeutically exploited by using the Aurora kinase inhibitor AT9283.


Assuntos
Benzimidazóis/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Inibidores de Proteínas Quinases/farmacologia , Ureia/análogos & derivados , Benzimidazóis/efeitos adversos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Ureia/efeitos adversos , Ureia/farmacologia
11.
Sci Transl Med ; 12(562)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967973

RESUMO

Neuroblastoma is a childhood malignancy with often dismal prognosis; relapse is common despite intense treatment. Here, we used human tumor organoids representing multiple MYCN-amplified high-risk neuroblastomas to perform a high-throughput drug screen with approved or emerging oncology drugs. Tumor-selective effects were calculated using drug sensitivity scores. Several drugs with previously unreported anti-neuroblastoma effects were identified by stringent selection criteria. ARRY-520, an inhibitor of kinesin spindle protein (KSP), was among those causing reduced viability. High expression of the KSP-encoding gene KIF11 was associated with poor outcome in neuroblastoma. Genome-scale loss-of-function screens in hundreds of human cancer cell lines across 22 tumor types revealed that KIF11 is particularly important for neuroblastoma cell viability. KSP inhibition in neuroblastoma patient-derived xenograft (PDX) cells resulted in the formation of abnormal monoastral spindles, mitotic arrest, up-regulation of mitosis-associated genes, and apoptosis. In vivo, KSP inhibition caused regression of MYCN-amplified neuroblastoma PDX tumors. Furthermore, treatment of mice harboring orthotopic neuroblastoma PDX tumors resulted in increased survival. Our results suggested that KSP inhibition could be a promising treatment strategy in children with high-risk neuroblastoma.


Assuntos
Cinesinas , Neuroblastoma , Animais , Apoptose , Linhagem Celular Tumoral , Cinesinas/genética , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico
12.
Clin Cancer Res ; 26(15): 4107-4119, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299813

RESUMO

PURPOSE: Molecular tumor heterogeneity may have important implications for the efficacy of targeted therapies in metastatic cancers. Inter-metastatic heterogeneity of sensitivity to anticancer agents has not been well explored in colorectal cancer. EXPERIMENTAL DESIGN: We established a platform for ex vivo pharmacogenomic profiling of patient-derived organoids (PDO) from resected colorectal cancer liver metastases. Drug sensitivity testing (n = 40 clinically relevant agents) and gene expression profiling were performed on 39 metastases from 22 patients. RESULTS: Three drug-response clusters were identified among the colorectal cancer metastases, based primarily on sensitivities to EGFR and/or MDM2 inhibition, and corresponding with RAS mutations and TP53 activity. Potentially effective therapies, including off-label use of drugs approved for other cancer types, could be nominated for eighteen patients (82%). Antimetabolites and targeted agents lacking a decisive genomic marker had stronger differential activity than most approved chemotherapies. We found limited intra-patient drug sensitivity heterogeneity between PDOs from multiple (2-5) liver metastases from each of ten patients. This was recapitulated at the gene expression level, with a highly proportional degree of transcriptomic and pharmacological variation. One PDO with a multi-drug resistance profile, including resistance to EGFR inhibition in a RAS-mutant background, showed sensitivity to MEK plus mTOR/AKT inhibition, corresponding with low-level PTEN expression. CONCLUSIONS: Intra-patient inter-metastatic pharmacological heterogeneity was not pronounced and ex vivo drug screening may identify novel treatment options for metastatic colorectal cancer. Variation in drug sensitivities was reflected at the transcriptomic level, suggesting potential to develop gene expression-based predictive signatures to guide experimental therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Variação Biológica Individual , Quimioterapia Adjuvante , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Hepatectomia , Humanos , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Organoides , Variantes Farmacogenômicos , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Células Tumorais Cultivadas
14.
EBioMedicine ; 50: 67-80, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31732481

RESUMO

BACKGROUND: Probing genetic dependencies of cancer cells can improve our understanding of tumour development and progression, as well as identify potential drug targets. CRISPR-Cas9-based and shRNA-based genetic screening are commonly utilized to identify essential genes that affect cancer growth. However, systematic methods leveraging these genetic screening techniques to derive consensus cancer dependency maps for individual cancer cell lines are lacking. FINDING: In this work, we first explored the CRISPR-Cas9 and shRNA gene essentiality profiles in 42 cancer cell lines representing 10 cancer types. We observed limited consistency between the essentiality profiles of these two screens at the genome scale. To improve consensus on the cancer dependence map, we developed a computational model called combined essentiality score (CES) to integrate the genetic essentiality profiles from CRISPR-Cas9 and shRNA screens, while accounting for the molecular features of the genes. We found that the CES method outperformed the existing gene essentiality scoring approaches in terms of ability to detect cancer essential genes. We further demonstrated the power of the CES method in adjusting for screen-specific biases and predicting genetic dependencies in individual cancer cell lines. INTERPRETATION: Systematic comparison of the CRISPR-Cas9 and shRNA gene essentiality profiles showed the limitation of relying on a single technique to identify cancer essential genes. The CES method provides an integrated framework to leverage both genetic screening techniques as well as molecular feature data to determine gene essentiality more accurately for cancer cells.

15.
NPJ Syst Biol Appl ; 5: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312514

RESUMO

Cancer cells with heterogeneous mutation landscapes and extensive functional redundancy easily develop resistance to monotherapies by emerging activation of compensating or bypassing pathways. To achieve more effective and sustained clinical responses, synergistic interactions of multiple druggable targets that inhibit redundant cancer survival pathways are often required. Here, we report a systematic polypharmacology strategy to predict, test, and understand the selective drug combinations for MDA-MB-231 triple-negative breast cancer cells. We started by applying our network pharmacology model to predict synergistic drug combinations. Next, by utilizing kinome-wide drug-target profiles and gene expression data, we pinpointed a synergistic target interaction between Aurora B and ZAK kinase inhibition that led to enhanced growth inhibition and cytotoxicity, as validated by combinatorial siRNA, CRISPR/Cas9, and drug combination experiments. The mechanism of such a context-specific target interaction was elucidated using a dynamic simulation of MDA-MB-231 signaling network, suggesting a cross-talk between p53 and p38 pathways. Our results demonstrate the potential of polypharmacological modeling to systematically interrogate target interactions that may lead to clinically actionable and personalized treatment options.


Assuntos
Aurora Quinase B/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Aurora Quinase B/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Interações Medicamentosas/genética , Sinergismo Farmacológico , Feminino , Humanos , MAP Quinase Quinase Quinases/fisiologia , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
16.
Nat Mach Intell ; 1(12): 568-577, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32368721

RESUMO

High-throughput drug combination screening provides a systematic strategy to discover unexpected combinatorial synergies in pre-clinical cell models. However, phenotypic combinatorial screening with multi-dose matrix assays is experimentally expensive, especially when the aim is to identify selective combination synergies across a large panel of cell lines or patient samples. Here we implemented DECREASE, an efficient machine learning model that requires only a limited set of pairwise dose-response measurements for accurate prediction of drug combination synergy and antagonism. Using a compendium of 23,595 drug combination matrices tested in various cancer cell lines, and malaria and Ebola infection models, we demonstrate how cost-effective experimental designs with DECREASE capture almost the same degree of information for synergy and antagonism detection as the fully-measured dose-response matrices. Measuring only the diagonal of the matrix provides an accurate and practical option for combinatorial screening. The open-source web-implementation enables applications of DECREASE to both pre-clinical and translational studies.

17.
Methods Mol Biol ; 1711: 351-398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344898

RESUMO

Gene products or pathways that are aberrantly activated in cancer but not in normal tissue hold great promises for being effective and safe anticancer therapeutic targets. Many targeted drugs have entered clinical trials but so far showed limited efficacy mostly due to variability in treatment responses and often rapidly emerging resistance. Toward more effective treatment options, we will need multi-targeted drugs or drug combinations, which selectively inhibit the viability and growth of cancer cells and block distinct escape mechanisms for the cells to become resistant. Functional profiling of drug combinations requires careful experimental design and robust data analysis approaches. At the Institute for Molecular Medicine Finland (FIMM), we have developed an experimental-computational pipeline for high-throughput screening of drug combination effects in cancer cells. The integration of automated screening techniques with advanced synergy scoring tools allows for efficient and reliable detection of synergistic drug interactions within a specific window of concentrations, hence accelerating the identification of potential drug combinations for further confirmatory studies.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Software , Linhagem Celular Tumoral , Humanos
18.
Viruses ; 9(10)2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946654

RESUMO

Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.


Assuntos
Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Isoquinolinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus/efeitos dos fármacos , Compostos de Anilina/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Benzotiazóis/química , Benzotiazóis/uso terapêutico , Linhagem Celular , DNA Viral/genética , Humanos , Isoquinolinas/química , Isoquinolinas/uso terapêutico , Metabolômica , RNA Viral/genética , Sulfonamidas/farmacologia , Transfecção , Viroses/tratamento farmacológico , Viroses/prevenção & controle
19.
Clin Cancer Res ; 23(21): 6697-6707, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821556

RESUMO

Purpose: Dasatinib is a short-acting dual ABL/SRC family tyrosine kinase inhibitor (TKI), which is frequently used to treat chronic myeloid leukemia. Although very effective, patients taking dasatinib often display severe adverse effects, including pleural effusions and increased risk of bleeding primarily in the gastrointestinal tract. The actual causes of these side effects are currently undetermined. We hypothesize that endothelial cells (ECs) that line the inner walls of blood vessels and control the traffic to the underlying tissues might be involved.Experimental Design: The effects of TKIs on ECs were studied by various assays, such as real-time cell impedance measurements, live-cell microscopy, wound healing, Western blot, and an in vivo model.Results: Dasatinib uniquely causes a profound, dose-dependent disorganization of the EC monolayers. Dasatinib promoted the disassembly of cell-cell contacts, altered cell-matrix contacts, and further altered the wound healing. A key observation is that this effect is fully reversible after drug washout. In line with these in vitro observations, intraperitoneal administration of dasatinib to mice caused significant vascular leakage in the intestine. The underlying molecular mechanism of dasatinib-induced reorganization of the actin involves ROCK activation, which increases the amount of the phosphorylation of myosin light chain and consequently activates the non-muscle myosin II.Conclusions: Our data are consistent with a scenario in which dasatinib triggers a transient increase in vascular leakage that probably contributes to adverse effects such as bleeding diathesis and pleural effusions. Clin Cancer Res; 23(21); 6697-707. ©2017 AACR.


Assuntos
Dasatinibe/administração & dosagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas Motores Moleculares/agonistas , Quinases Associadas a rho/genética , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Dasatinibe/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Cadeias Pesadas de Miosina , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Associadas a rho/metabolismo
20.
Oncotarget ; 8(11): 18381-18398, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28179588

RESUMO

TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes.In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines.If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer.


Assuntos
Antraciclinas/uso terapêutico , Neoplasias da Mama/genética , Locos de Características Quantitativas , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/patologia , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Ligases SKP Culina F-Box/genética , Análise de Sobrevida , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA