Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(13): 2520-2531, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38875216

RESUMO

Neuroimaging biomarkers are needed to investigate the impact of smoking withdrawal on brain function. NFL-101 is a denicotinized aqueous extract of tobacco leaves currently investigated as an immune-based smoking cessation therapy in humans. However, the immune response to NFL-101 and its ability to induce significant changes in brain function remain to be demonstrated. Brain glucose metabolism was investigated using [18F]fluoro-deoxy-glucose ([18F]FDG) PET imaging in a mouse model of cigarette smoke exposure (CSE, 4-week whole-body inhalation, twice daily). Compared with control animals, the relative uptake of [18F]FDG in CSE mice was decreased in the thalamus and brain stem (p < 0.001, n = 14 per group) and increased in the hippocampus, cortex, cerebellum, and olfactory bulb (p < 0.001). NFL-101 induced a humoral immune response (specific IgGs) in mice and activated human natural-killer lymphocytes in vitro. In CSE mice, but not in control mice, single-dose NFL-101 significantly increased [18F]FDG uptake in the thalamus (p < 0.01), thus restoring normal brain glucose metabolism after 2-day withdrawal in this nicotinic receptor-rich region. In tobacco research, [18F]FDG PET imaging provides a quantitative method to evaluate changes in the brain function associated with the withdrawal phase. This method also showed the CNS effects of NFL-101, with translational perspectives for future clinical evaluation in smokers.


Assuntos
Encéfalo , Glucose , Tomografia por Emissão de Pósitrons , Abandono do Hábito de Fumar , Animais , Glucose/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Abandono do Hábito de Fumar/métodos , Humanos , Masculino , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Fluordesoxiglucose F18 , Nicotiana , Fumaça , Síndrome de Abstinência a Substâncias/metabolismo
2.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35455390

RESUMO

Endotoxemia-induced inflammation may impact the activity of hepatocyte transporters, which control the hepatobiliary elimination of drugs and bile acids. 99mTc-mebrofenin is a non-metabolized substrate of transporters expressed at the different poles of hepatocytes. 99mTc-mebrofenin imaging was performed in rats after the injection of lipopolysaccharide (LPS). Changes in transporter expression were assessed using quantitative polymerase chain reaction of resected liver samples. Moreover, the particular impact of pharmacokinetic drug-drug interactions in the context of endotoxemia was investigated using rifampicin (40 mg/kg), a potent inhibitor of hepatocyte transporters. LPS increased 99mTc-mebrofenin exposure in the liver (1.7 ± 0.4-fold). Kinetic modeling revealed that endotoxemia did not impact the blood-to-liver uptake of 99mTc-mebrofenin, which is mediated by organic anion-transporting polypeptide (Oatp) transporters. However, liver-to-bile and liver-to-blood efflux rates were dramatically decreased, leading to liver accumulation. The transcriptomic profile of hepatocyte transporters consistently showed a downregulation of multidrug resistance-associated proteins 2 and 3 (Mrp2 and Mrp3), which mediate the canalicular and sinusoidal efflux of 99mTc-mebrofenin in hepatocytes, respectively. Rifampicin effectively blocked both the Oatp-mediated influx and the Mrp2/3-related efflux of 99mTc-mebrofenin. The additive impact of endotoxemia and rifampicin led to a 3.0 ± 1.3-fold increase in blood exposure compared with healthy non-treated animals. 99mTc-mebrofenin imaging is useful to investigate disease-associated change in hepatocyte transporter function.

3.
Eur J Nucl Med Mol Imaging ; 49(1): 186-200, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34041563

RESUMO

PURPOSE: Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS: In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS: The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION: Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION: The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.


Assuntos
Gliose , Transtornos Relacionados ao Uso de Substâncias , Animais , Gliose/diagnóstico por imagem , Sistema Imunitário , Tomografia por Emissão de Pósitrons , Receptores de GABA , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Tomografia Computadorizada por Raios X
4.
Pharmaceutics ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471244

RESUMO

The multidrug resistance-associated protein 2 (MRP2) mediates the biliary excretion of drugs and metabolites. [99mTc]mebrofenin may be employed as a probe for hepatic MRP2 activity because its biliary excretion is predominantly mediated by this transporter. As the liver uptake of [99mTc]mebrofenin depends on organic anion-transporting polypeptide (OATP) activity, a safe protocol for targeted inhibition of hepatic MRP2 is needed to study the intrinsic role of each transporter system. Diltiazem (DTZ) and cyclosporin A (CsA) were first confirmed to be potent MRP2 inhibitors in vitro. Dynamic acquisitions were performed in rats (n = 5-6 per group) to assess the kinetics of [99mTc]mebrofenin in the liver, intestine and heart-blood pool after increasing doses of inhibitors. Their impact on hepatic blood flow was assessed using Doppler ultrasound (n = 4). DTZ (s.c., 10 mg/kg) and low-dose CsA (i.v., 0.01 mg/kg) selectively decreased the transfer of [99mTc]mebrofenin from the liver to the bile (k3). Higher doses of DTZ and CsA did not further decrease k3 but dose-dependently decreased the uptake (k1) and backflux (k2) rate constants between blood and liver. High dose of DTZ (i.v., 3 mg/kg) but not CsA (i.v., 5 mg/kg) significantly decreased the blood flow in the portal vein and hepatic artery. Targeted pharmacological inhibition of hepatic MRP2 activity can be achieved in vivo without impacting OATP activity and liver blood flow. Clinical studies are warranted to validate [99mTc]mebrofenin in combination with low-dose CsA as a novel substrate/inhibitor pair to untangle the role of OATP and MRP2 activity in liver diseases.

5.
Addict Biol ; 23(5): 1000-1009, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944558

RESUMO

The effects of acute alcohol exposure to the central nervous system are hypothesized to involve the innate immune system. The neuroimmune response to an initial and acute alcohol exposure was investigated using translocator protein 18 kDa (TSPO) PET imaging, a non-invasive marker of glial activation, in adolescent baboons. Three different alcohol-naive adolescent baboons (3-4 years old, 9 to 14 kg) underwent 18 F-DPA-714 PET experiments before, during and 7-12 months after this initial alcohol exposure (0.7-1.0 g/l). The brain distribution of 18 F-DPA-714 (VT ; in ml/cm3 ) was estimated in several brain regions using the Logan plot analysis and the metabolite-corrected arterial input function. Compared with alcohol-naive animals (VTbrain  = 3.7 ± 0.7 ml/cm3 ), the regional VT s of 18 F-DPA-714 were significantly increased during alcohol exposure (VTbrain  = 7.2 ± 0.4 ml/cm3 ; p < 0.001). Regional VT s estimated several months after alcohol exposure (VTbrain  = 5.7 ± 1.4 ml/cm3 ) were lower (p < 0.001) than those measured during alcohol exposure, but remained significantly higher (p < 0.001) than in alcohol-naive animals. The acute and long-term effects of ethanol exposure were observed globally across all brain regions. Acute alcohol exposure increased the binding of 18 F-DPA-714 to the brain in a non-human primate model of alcohol exposure that reflects the 'binge drinking' situation in adolescent individuals. The effect persisted for several months, suggesting a 'priming' of glial cell function after initial alcohol exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Etanol/imunologia , Fluordesoxiglucose F18 , Neuroimunomodulação/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos , Pirazóis , Pirimidinas , Receptores de GABA-A/imunologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/imunologia , Encéfalo/imunologia , Modelos Animais de Doenças , Etanol/farmacologia , Estudos Longitudinais , Neuroimunomodulação/imunologia , Papio , Pirazóis/imunologia , Pirimidinas/imunologia , Compostos Radiofarmacêuticos , Receptores de GABA-A/efeitos dos fármacos , Tempo
6.
J Pharm Biomed Anal ; 123: 173-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-26907700

RESUMO

In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 µg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase.


Assuntos
Artérias/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Plasma/química , Rifampina/sangue , Rifampina/química , Espectrofotometria Ultravioleta/métodos , Veias/metabolismo , Animais , Área Sob a Curva , Cinética , Masculino , Papio , Reprodutibilidade dos Testes , Rifampina/análogos & derivados , Rifampina/farmacocinética
7.
AAPS J ; 17(3): 652-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25716150

RESUMO

The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 µM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fluordesoxiglucose F18/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ciclosporina/farmacologia , Ciclosporinas/farmacologia , Cães , Glucose/metabolismo , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Papio , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
8.
AAPS J ; 15(4): 1082-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907487

RESUMO

Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Glibureto/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Acridinas/metabolismo , Acridinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Cães , Glibureto/farmacologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Papio anubis , Tetra-Hidroisoquinolinas/metabolismo , Tetra-Hidroisoquinolinas/farmacologia
9.
J Nucl Med ; 52(3): 415-23, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21321274

RESUMO

UNLABELLED: Radiolabeled compounds used for brain imaging with PET must readily cross the blood-brain barrier (BBB) to reach their target. Efflux transporters at the BBB-P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP)-could limit their uptake by the brain. METHODS: We developed and validated an in vitro model using MDCKII cells transfected with human multidrug resistance (MDR1) or BCRP genes and assessed the transport of selected PET ligands by the concentration equilibrium technique. The tested compounds included befloxatone, (R,S)-CGP-12177, clorgyline, R-(-)-deprenyl, diprenorphine, DPA-714, fallypride, flumazenil, 2-fluoro-A-85380, LBT-999, loperamide, p-MPPF, PE2I, Pittsburgh compound B (PIB), (R,S)-PK11195, raclopride, R-(+)-verapamil, and WAY-100635. The assays were performed using the nonradioactive form of each compound (ultraviolet high-performance liquid chromatography analysis) and, when available, the (18)F-labeled analogs (γ-counting). RESULTS: Befloxatone appeared to be transported solely by BCRP. Loperamide, verapamil, and diprenorphine were the only P-gp substrates. Other ligands were transported by neither P-gp nor BCRP. CONCLUSION: The present method can readily be used to screen new-compound transport by P-gp or BCRP, even before any radiolabeling. Compounds that were previously thought to be transported by P-gp in rodents, such as p-MPPF, WAY-100635, and flumazenil, cannot be considered substrates of human P-gp. The impact of BCRP and P-gp at the BBB on the transport of befloxatone and diprenorphine in vivo remains to be evaluated with PET.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Rim/metabolismo , Proteínas de Neoplasias/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transporte Biológico Ativo/fisiologia , Linhagem Celular , Humanos , Rim/diagnóstico por imagem , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA