Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(1): 41, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658114

RESUMO

The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation. Inhibition of plexin-A2 expression in U87MG cells also results in strong inhibition of their tumor forming ability. Knock-out of the plexin-A2 gene in U87MG cells using CRISPR/Cas9 inhibits cell proliferation which is rescued following plexin-A2 re-expression, or expression of a truncated plexin-A2 lacking its extracellular domain. Inhibition of plexin-A2 expression results in cell cycle arrest at the G2/M stage, and is accompanied by changes in cytoskeletal organization, cell flattening, and enhanced expression of senescence associated ß-galactosidase. It is also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN and by the GTPase activating (GAP) domain located in the intracellular domain of plexin-A2. Point mutations in these locations inhibit the rescue of cell proliferation upon re-expression of the mutated intracellular domain in the knock-out cells. In contrast re-expression of a plexin-A2 cDNA containing a point mutation in the semaphorin binding domain failed to inhibit the rescue. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.


Assuntos
Glioblastoma , Proteínas do Tecido Nervoso , Receptores de Superfície Celular , Semaforinas , Humanos , Proliferação de Células/genética , Células Endoteliais/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203720

RESUMO

The Lymphocyte-Activation Protein 3 (LAG-3) inhibitory receptor is expressed on regulatory plasma cells (PCs). Micro-environmental cells that express LAG-3 were found to be increased during the progression of smoldering multiple myeloma (SMM). To assess the possible role of LAG-3 expression on regulatory PCs in patients with plasma cell dyscrasia. Purified Cluster of Differentiation 138 (CD138+) PCs from patients with premalignant conditions, active multiple myeloma (MM), and controls were analyzed for the expression of LAG-3 by flow cytometry. Autologous CD8+T cells were incubated with sorted LAG-3pos or LAG-3neg PCs for 24 h. The expression of granzyme (Grz) in CD8+T cells was assessed by flow cytometry. LAG-3 expression on PCs in active MM (newly diagnosed and relapse refractory MM) was significantly increased compared to monoclonal gammopathy of undetermined significance (MGUS)/ SMM. Grz expression was significantly decreased in CD8+T cells incubated with CD138+LAG-3pos PCs, compared to CD138+LAG-3neg PCs in patients with plasma cell dyscrasia, n = 31, p = 0.0041. LAG-3 expression on malignant PCs can be involved in the development of MM from MGUS by decreasing the expression of Grz in CD8+T cells.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Neoplasias de Plasmócitos , Paraproteinemias , Humanos , Plasmócitos , Granzimas
3.
Front Pharmacol ; 13: 1085892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703747

RESUMO

Regulatory molecules have recently been recognized for their beneficial effects in the treatment of immune-mediated diseases, rather than using cytotoxic immune-suppressing drugs, which are associated with many unwanted side effects. Semaphorin3A (sema3A), a unique regulatory master of the immune system, was shown to be decreased in the serum of systemic lupus erythematosus (SLE) patients, in association with disease severity. Later, we were able to show its extremely beneficial effect in treating lupus nephritis in the NZB/W mice model. The mechanisms by which sema3A maintains its regulatory effect is by binding the regulatory receptor CD72 on B cells, thereby reducing the threshold of BCR signaling on B cells and reducing the production of pro-inflammatory cytokines. The aim of this study was to generate a stable sema3A molecule, easy to produce with a higher binding capacity to CD72 receptor rather than to Neuropilin-1 (NRP-1) receptor, which is expressed in many cell types. Using the crystallographic structure of parental sema3A, we synthesized a new secreted (shorter) sema3A derivative, which we called truncated sema3A (T-sema3A). The new molecule lacked the NRP-1 binding domain (the C-terminal site) and has an artificial dimerization site at position 257 (serine residue was exchanged with a cysteine residue). To facilitate the purification of this molecule we added Histidine epitope tag in frame upstream to a stop codon. This construct was transfected using a viral vector to 293HEK cells to generate cells stably expressing T-sema3A. T-sema3A is shown to be with a higher binding ability to CD72 than to NRP-1 as demonstrated by a homemade ELISA. In addition, T-sema3A was shown to be a regulatory agent which can induce the expression of IL-10 and TGF-ß and reduce the secretion of pro-inflammatory cytokines such as IL-6, IFN-γ, and IL-17A from human T and B-lymphocytes. Keeping this in mind, T-sema3A is highly effective in maintaining immune homeostasis, therefore, becoming a potential agent in restoring the regulatory status of the immune system in immune-mediated diseases.

4.
J Cell Sci ; 127(Pt 24): 5240-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335892

RESUMO

Class 3 semaphorins are anti-angiogenic and anti-tumorigenic guidance factors that bind to neuropilins, which, in turn, associate with class A plexins to transduce semaphorin signals. To study the role of the plexin-A2 receptor in semaphorin signaling, we silenced its expression in endothelial cells and in glioblastoma cells. The silencing did not affect Sema3A signaling, which depended on neuropilin-1, plexin-A1 and plexin-A4, but completely abolished Sema3B signaling, which also required plexin-A4 and one of the two neuropilins. Interestingly, overexpression of plexin-A2 in plexin-A1- or plexin-A4-silenced cells restored responses to both semaphorins, although it nullified their ability to differentiate between them, suggesting that, when overexpressed, plexin-A2 can functionally replace other class A plexins. By contrast, although plexin-A4 overexpression restored Sema3A signaling in plexin-A1-silenced cells, it failed to restore Sema3B signaling in plexin-A2-silenced cells. It follows that the identity of plexins in functional semaphorin receptors can be flexible depending on their expression level. Our results suggest that changes in the expression of plexins induced by microenvironmental cues can trigger differential responses of different populations of migrating cells to encountered gradients of semaphorins.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inativação Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Neuropilina-1/metabolismo
5.
PLoS One ; 7(8): e42912, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936999

RESUMO

Class-3 semaphorins are secreted axon guidance factors. Some of these semaphorins have recently been characterized as suppressors of tumor progression. To determine if class-3 semaphorins can be used to inhibit the development of glioblastoma-multiforme tumors, we expressed recombinant sema-3A, 3B, 3D, 3E, 3F or 3G in U87MG glioblastoma cells. Sema3A and sema3B expressing cells contracted and changed shape persistently while cells expressing other semaphorins did not. Sema3A and sema3F differed from other semaphorins including sema3B as they also inhibited the proliferation of the cells and the formation of soft agar colonies. With the exception of sema3G and sema3B, expression of these semaphorins in U87MG cells inhibited significantly tumor development from subcutaneously implanted cells. Strong inhibition of tumor development was also observed following implantation of U87MG cells expressing each of the class-3 semaphorins in the cortex of mouse brains. Sema3D and sema3E displayed the strongest inhibitory effects and their expression in U373MG or in U87MG glioblastoma cells implanted in the brains of mice prolonged the survival of the mice by more then two folds. Furthermore, most of the mice that died prior to the end of the experiment did not develop detectable tumors and many of the mice survived to the end of the experiment. Most of the semaphorins that we have used here with the exception of sema3D were characterized previously as inhibitors of angiogenesis. Our results indicate that sema3D also functions as an inhibitor of angiogenesis and suggest that the anti-tumorigenic effects are due primarily to inhibition of tumor angiogenesis. These results indicate that class-3 semaphorins such as sema3D and sema3E could perhaps be used to treat glioblastoma patients.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Semaforinas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Semaforinas/genética
6.
Cold Spring Harb Perspect Med ; 2(1): a006718, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22315716

RESUMO

The semaphorins were initially described as axon guidance factors, but have recently been implicated in a variety of physiological and developmental functions, including regulation of immune response, angiogenesis, and migration of neural crest cells. The semaphorin family contains more than 30 genes divided into seven subfamilies, all of which are characterized by the presence of a sema domain. The semaphorins transduce their signals by binding to one of the nine receptors belonging to the plexin family, or, in the case of the class 3 semaphorins, by binding to one of the two neuropilin receptors. Additional receptors, which form complexes with these primary semaphorin receptors, are also frequently involved in semaphorin signaling. Recent evidence suggests that some semaphorins can act as antiangiogenic and/or antitumorigenic agents whereas other semaphorins promote tumor progression and/or angiogenesis. Furthermore, loss of endogenous inhibitory semaphorin expression or function on one hand, and overexpression of protumorigenic semaphorins on the other hand, is associated with the progression of some tumor types.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Semaforinas/fisiologia , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Progressão da Doença , Humanos , Imunofilinas/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neovascularização Patológica/tratamento farmacológico , Receptores de Superfície Celular/genética , Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA