Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(46): 103225-103243, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688695

RESUMO

The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively. The highest concentration of MPs was detected near the river mouths and industrial areas where the waste discharge rate and anthropogenic activities dominate. Fibre-type MPs are the most abundant, with an average of nearly 64%, followed by fragments, films, microbeads, and foams. The most dominant polymer types were polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyester (PET). Overall, the current study shows a better understanding of MPs occurrence and potential sources in the Miri coastal area.

2.
Environ Res ; 203: 111791, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333012

RESUMO

Uranium (U) in groundwater is hazardous to human health, especially if it is present in drinking water. The semiarid regions of southern India chiefly depend on groundwater for drinking purposes. In this regard, a comprehensive sampling strategy was adopted to collect groundwater representing different lithologies of the region. The samples were collected in two different seasons and analysed for major and minor ions along with total U in the groundwater. Two samples during pre monsoon (PRM) and seven samples during post monsoon (POM) had U > 30 µgL-1, which is above the World Health Organization's provisional guideline value. The high concentration of U (188 µgL-1) was observed in the alluvial formation though a few samples showed the release of U near the pink granite (39 µgL-1) and the concentration was low in the lateritic formation (10 µgL-1). The uranyl carbonato complexes UO2(CO3)22- and UO2(CO3)34- were associated with high pH which facilitated the transport of U into groundwater especially during POM. U3O8 is the major form observed in groundwater compared to either UO2 or UO3 in the both seasons. The uranium oxides were observed to be more prevalent at the neutral pH. Though U concentration increases with pH, it is mainly governed by the redox conditions. The principal component analysis (PCA) analysis also suggested redox conditions in groundwater to be the major process facilitating the U release mechanism regardless of the season. The POM season has an additional source of U in groundwater due to the application of nitrogenous fertilizers in the alluvium region. Furthermore, redox mobilization factor was predominantly observed near the coastal region and in the agricultural regions. The process of infiltration of the fertilizer-induced U was enhanced by the agricultural runoff into the surface water bodies in the region. Health risk assessment was also carried out by determining annual effective dose rate, cancer mortality risk, lifetime average daily dose and hazard quotient to assess the portability of groundwater in the study area. Artificial recharge technique and reducing the usage of chemical based fertilizers for irrigation are suggested as sustainable plans to safeguard the vulnerable water resource in this region.


Assuntos
Água Subterrânea , Urânio , Poluentes Químicos da Água , Poluentes Radioativos da Água , Monitoramento Ambiental , Fertilizantes , Humanos , Índia , Medição de Risco , Urânio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/toxicidade
3.
Arch Environ Contam Toxicol ; 80(1): 183-207, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392777

RESUMO

Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 µg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 µg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água Subterrânea/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Água Doce/química , Humanos , Índia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA