Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 38(4): 1932-1940, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765947

RESUMO

Glioblastoma multiforme (GBM) is the most common primary, intracranial malignancy of the central nervous system. The standard treatment protocol, which involves surgical resection, and concurrent radiation with adjuvant temozolomide (TMZ), still imparts a grim prognosis. Ultimately, all GBMs exhibit recurrence or progression, developing resistance to standard treatment. This study demonstrates that GBMs acquire resistance to radiation via upregulation of acid ceramidase (ASAH1) and sphingosine­1-phosphate (Sph-1P). Moreover, inhibition of ASAH1 and Sph-1P, either with humanized monoclonal antibodies, small molecule drugs (i.e. carmofur), or a combination of both, led to suppression of GBM cell growth. These results suggest that ASAH1 and Sph-1P may be excellent targets for the treatment of new GBMs and recurrent GBMs, especially since the latter overexpresses ASAH1.


Assuntos
Ceramidase Ácida/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/radioterapia , Glioblastoma/enzimologia , Glioblastoma/radioterapia , Ceramidase Ácida/biossíntese , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Lisofosfolipídeos/metabolismo , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Tolerância a Radiação , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Regulação para Cima
2.
Sci Signal ; 10(472)2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351953

RESUMO

Sphingosine kinase 1 (SphK1) promotes cell proliferation and survival, and its abundance is often increased in tumors. SphK1 produces the signaling lipid sphingosine 1-phosphate (S1P), which activates signaling cascades downstream five G protein-coupled receptors (S1P1-5) to modulate vascular and immune system function and promote proliferation. We identified a new function of the SphK1-S1P pathway specifically in the control of mitosis. SphK1 depletion in HeLa cells caused prometaphase arrest, whereas its overexpression or activation accelerated mitosis. Increasing the abundance of S1P promoted mitotic progression, overrode the spindle assembly checkpoint (SAC), and led to chromosome segregation defects. S1P was secreted through the transporter SPNS2 and stimulated mitosis by binding to and activating S1P5 on the extracellular side, which then activated the intracellular phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Knockdown of S1P5 prevented the S1P-induced spindle defect phenotype. RNA interference assays revealed that the mitotic kinase Polo-like kinase 1 (PLK1) was an important effector of S1P-S1P5 signaling-induced mitosis in HeLa cells. Our findings identify an extracellular signal and the downstream pathway that promotes mitotic progression and may indicate potential therapeutic targets to inhibit the proliferation of cancer cells.


Assuntos
Segregação de Cromossomos/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Mitose/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Camundongos Knockout , Microscopia Confocal , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia , Imagem com Lapso de Tempo/métodos , Quinase 1 Polo-Like
3.
Oncotarget ; 6(15): 13803-21, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25915662

RESUMO

Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/imunologia , Neoplasias da Próstata/tratamento farmacológico , Esfingosina/análogos & derivados , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Distribuição Aleatória , Transdução de Sinais , Esfingosina/antagonistas & inibidores , Esfingosina/imunologia , Remodelação Vascular/efeitos dos fármacos
4.
Clin Cancer Res ; 21(8): 1925-1934, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25589614

RESUMO

PURPOSE: VEGFR2 tyrosine kinase inhibition (TKI) is a valuable treatment approach for patients with metastatic renal cell carcinoma (RCC). However, resistance to treatment is inevitable. Identification of novel targets could lead to better treatment for patients with TKI-naïve or -resistant RCC. EXPERIMENTAL DESIGN: In this study, we performed transcriptome analysis of VEGFR TKI-resistant tumors in a murine model and discovered that the SPHK-S1P pathway is upregulated at the time of resistance. We tested sphingosine-1-phosphate (S1P) pathway inhibition using an anti-S1P mAb (sphingomab), in two mouse xenograft models of RCC, and assessed tumor SPHK expression and S1P plasma levels in patients with metastatic RCC. RESULTS: Resistant tumors expressed several hypoxia-regulated genes. The SPHK1 pathway was among the most highly upregulated pathways that accompanied resistance to VEGFR TKI therapy. SPHK1 was expressed in human RCC, and the product of SPHK1 activity, S1P, was elevated in patients with metastatic RCC, suggesting that human RCC behavior could, in part, be due to overproduction of S1P. Sphingomab neutralization of extracellular S1P slowed tumor growth in both mouse models. Mice bearing tumors that had developed resistance to sunitinib treatment also exhibited tumor growth suppression with sphingomab. Sphingomab treatment led to a reduction in tumor blood flow as measured by MRI. CONCLUSIONS: Our findings suggest that S1P inhibition may be a novel therapeutic strategy in patients with treatment-naïve RCC and also in the setting of resistance to VEGFR TKI therapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Lisofosfolipídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Lisofosfolipídeos/antagonistas & inibidores , Camundongos , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Oncol ; 8(7): 1181-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24768038

RESUMO

Sphingosine 1-phosphate (S1P) plays important roles in cell proliferation, differentiation or survival mainly through its surface G-protein-coupled receptors S1P1-5. Bone represents the major site of metastasis for prostate cancer (CaP) cells, which rely on bone-derived factors to support their proliferation and resistance to therapeutics. In the present work we have found that conditioned medium (CM) from the MC3T3 osteoblastic cell line or primary murine and human osteoblast-like cells, as well as co-culture with MC3T3 stimulate proliferation of CaP lines in S1P-dependent manner. In addition, osteoblastic-derived S1P induces resistance of CaP cells to therapeutics including chemotherapy and radiotherapy. When S1P release from osteoblastic cells is decreased (inhibition of SphK1, knock-down of SphK1 or the S1P transporter, Spns2 by siRNA) or secreted S1P neutralized with anti-S1P antibody, the proliferative and survival effects of osteoblasts on CaP cells are abolished. Because of the paracrine nature of the signaling, we studied the role of the S1P receptors expressed on CaP cells in the communication with S1P secreted by osteoblasts. Strategies aimed at down-regulating S1P1, S1P2 or S1P3 (siRNA, antagonists), established the exclusive role of the S1P/S1P1 signaling between osteoblasts and CaP cells. Bone metastases from CaP are associated with osteoblastic differentiation resulting in abnormal bone formation. We show that the autocrine S1P/S1P3 signaling is central during differentiation to mature osteoblasts by regulating Runx2 level, a key transcription factor involved in osteoblastic maturation. Importantly, differentiated osteoblasts exhibited enhanced secretion of S1P and further stimulated CaP cell proliferation in a S1P-dependent manner. By establishing the dual role of osteoblast-borne S1P on both osteoblastic differentiation and CaP cell proliferation and survival, we uncover the importance of S1P in the bone metastatic microenvironment, which may open a novel area of study for the treatment of CaP bone metastasis by targeting S1P.


Assuntos
Neoplasias Ósseas/secundário , Lisofosfolipídeos/metabolismo , Osteoblastos/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Osteoblastos/citologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Transdução de Sinais , Esfingosina/metabolismo
6.
Br J Pharmacol ; 162(6): 1225-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21091645

RESUMO

Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid thought to be dysregulated in a variety of disease conditions. In this review, we discuss the roles of S1P in cancer and in wet age-related macular degeneration. We also explore potential treatment strategies for these disorders, including the utility of anti-S1P antibodies acting as molecular sponges to neutralize dysregulated S1P in relevant tissues.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Lisofosfolipídeos/imunologia , Lisofosfolipídeos/metabolismo , Neoplasias/terapia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Degeneração Macular Exsudativa/terapia , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/imunologia , Esfingosina/metabolismo
7.
Cardiovasc Res ; 82(2): 303-12, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19228708

RESUMO

AIMS: Following injury, fibroblasts transform into myofibroblasts and produce extracellular matrix (ECM). Excess production of ECM associated with cardiac fibrosis severely inhibits cardiac function. Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, regulates the function of numerous cell types. In this study, we determined the role of S1P in promoting pro-fibrotic actions of cardiac fibroblasts (CFs). METHODS AND RESULTS: S1P-mediated effects on myofibroblast transformation, collagen production, and cross-talk with transforming growth factor-beta (TGF-beta) using mouse CF were examined. S1P increased alpha-smooth muscle actin (a myofibroblast marker) and collagen expression in a S1P2 receptor- and Rho kinase-dependent manner. TGF-beta increased sphingosine kinase 1 (SphK1; the enzyme responsible for S1P production) expression and activity. TGF-beta-stimulated collagen production was inhibited by SphK1 or S1P2 siRNA, a SphK inhibitor, and an anti-S1P monoclonal antibody. CONCLUSION: These findings suggest that TGF-beta-stimulated collagen production in CF involves 'inside-out' S1P signalling whereby S1P produced intracellularly by SphK1 can be released and act in an autocrine/paracrine fashion to activate S1P2 and increase collagen production.


Assuntos
Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Linfotoxina-alfa/farmacologia , Lisofosfolipídeos/metabolismo , Miocárdio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Animais , Anticorpos Monoclonais/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Lisofosfolipídeos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Quinases Associadas a rho/metabolismo
8.
Vaccine ; 25(12): 2279-87, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17258845

RESUMO

In the midst of new investigations into the mechanisms of both delivery and protection of new vaccines and vaccine carriers, it has become clear that immunization with delivery mechanisms that do not involve living, replicating organisms are vastly preferred. In this report, non-replicating bacterial minicells simultaneously co-delivering the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) and the corresponding DNA vaccine were tested for the ability to generate protective cellular immune responses in mice. It was found that good protection (89%) was achieved after intramuscular administration, moderate protection (31%) was achieved after intranasal administration, and less protection (7%) was achieved following gastric immunization. These results provide a solid foundation on which to pursue the use of bacterial minicells as a non-replicating vaccine delivery platform.


Assuntos
Imunização/métodos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Nucleoproteínas/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células COS , Chlorocebus aethiops , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/virologia , Injeções Intramusculares , Coriomeningite Linfocítica/prevenção & controle , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Nucleoproteínas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
Vaccine ; 24(33-34): 6009-17, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16806602

RESUMO

Recent events surrounding emerging infectious diseases, bioterrorism and increasing multidrug antibiotic resistance in bacteria have drastically increased current needs for effective vaccines. Many years of study have shown that live, attenuated pathogens are often more effective at delivering heterologous protein or DNA to induce protective immune responses. However, these vaccine carriers have inherent safety concerns that have limited their development and their use in many patient populations. Studies using nonliving delivery mechanisms have shown that providing both protein antigen and DNA encoding the antigen to an individual induces an improved, more protective immune response but rarely, if ever, are both delivered simultaneously. Here, non-replicating bacterial minicells derived from a commensal E. coli strain are shown to effectively induce antigen-specific immune responses after simultaneous protein and DNA delivery. These data demonstrate the potential use of achromosomal bacterial minicells as a vaccine carrier.


Assuntos
Formação de Anticorpos , Escherichia coli/genética , Proteínas de Fluorescência Verde/imunologia , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Administração Intranasal , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/imunologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Injeções Intramusculares , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinas de DNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem
10.
Cancer Cell ; 9(3): 225-38, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16530706

RESUMO

S1P has been proposed to contribute to cancer progression by regulating tumor proliferation, invasion, and angiogenesis. We developed a biospecific monoclonal antibody to S1P to investigate its role in tumorigenesis. The anti-S1P mAb substantially reduced tumor progression and in some cases eliminated measurable tumors in murine xenograft and allograft models. Tumor growth inhibition was attributed to antiangiogenic and antitumorigenic effects of the antibody. The anti-S1P mAb blocked EC migration and resulting capillary formation, inhibited blood vessel formation induced by VEGF and bFGF, and arrested tumor-associated angiogenesis. The anti-S1P mAb also neutralized S1P-induced proliferation, release of proangiogenic cytokines, and the ability of S1P to protect tumor cells from apoptosis in several tumor cell lines, validating S1P as a target for therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Lisofosfolipídeos/imunologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Esfingosina/análogos & derivados , Animais , Especificidade de Anticorpos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Esfingosina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA