Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Expert Opin Ther Pat ; 34(3): 141-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557273

RESUMO

INTRODUCTION: Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED: This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION: To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.


Assuntos
Antineoplásicos , Desenho de Fármacos , Desenvolvimento de Medicamentos , Neoplasias , Patentes como Assunto , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Terapia de Alvo Molecular
2.
Expert Opin Ther Pat ; 34(1-2): 51-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450537

RESUMO

INTRODUCTION: Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions. AREA COVERED: This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation. EXPERT OPINION: To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Patentes como Assunto , Transdução de Sinais , Receptores ErbB , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Pharmaceutics ; 14(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145724

RESUMO

N-(2-fluorphenyl)-6-chloro-4-hydroxy-2-quinolone-3-carboxamide (R19) is a newly synthesized phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitor with promising activity against cancer cells. The purpose of this study was to develop a polymeric nanoparticle (NP) formulation for R19 to address its poor aqueous solubility and to facilitate its future administration in preclinical and clinical settings. NPs were prepared by nanoprecipitation using two polymers: D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) and the poloxamer Pluronic P123 in different ratios. Physicochemical characterization of the NPs revealed them to be around 100 nm in size with high monodispersity, a spherical morphology, and an almost neutral surface charge. The NPs achieved ~60% drug loading efficiency and sustained release of R19 for up to 96 h, with excellent colloidal stability in serum-containing cell culture media. NPs containing TPGS enhanced R19's potency against MCF-7 and MDA-MB-231 breast cancer cells in vitro, with half-maximal inhibitory concentrations (IC50) ranging between 1.8 and 4.3 µM compared to free R19, which had an IC50 of 14.7-17.0 µM. The NPs also demonstrated low cytotoxicity against human dermal fibroblasts and more significant induction of apoptosis compared to the free drug, which was correlated with their cellular uptake efficiency. Our findings present a biocompatible NP formulation for the delivery of a cancer-targeted PI3Kα inhibitor, R19, which can further enhance its potency for the treatment of breast cancer and potentially other cancer types.

4.
Diagnostics (Basel) ; 12(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35885645

RESUMO

The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.

5.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566238

RESUMO

Lung cancer is one of the most common causes of cancer-related deaths worldwide. Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS) that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression. Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is still under investigation. Ligand- and structure-based drug design approaches guided the discovery and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50) values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM, respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant and consistent evidence on MAO-A activity in lung cancer and present a potential target for the development of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antidepressivos/farmacologia , Antineoplásicos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
6.
J Immunol Res ; 2022: 6031776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284577

RESUMO

Introduction: This study is aimed at investigating the immunological response after treating THP-1 cells with gold nanorods conjugated with a phosphatidylinositol 3-kinase (PI3Kα) inhibitor. Methodology. Gold nanorods were synthesized and functionalized with cholesterol-PEG-SH moiety, and the treatment groups were as follows: nanocomplex (a drug-conjugated gold nanorods), free drug (phosphatidylinositol 3-kinase (PI3Kα) inhibitor), and GNR (the nanocarrier; cholesterol-coated gold nanorods). THP-1 cells were differentiated into macrophages and characterized by measuring the expression of macrophage surface markers by flow cytometry. Then, differentiated cells were activated by lipopolysaccharide (LPS). Afterwards, activated macrophages were treated with the different treatments: nanocomplex, free drug, and GNR, for 24 hrs. After treatment, the production of the inflammatory cytokines measured at gene and protein levels by using qPCR and CBA array beads by flow cytometry. Results: Our results show that THP-1 cells were successfully differentiated into macrophages. For inflammatory cytokine expression response, nanocomplex and free drug showed the same expression level of cytokines at gene level, as the expression of IL-1ß, IL-6, and TNF-α was significantly downregulated (p < 0.0005, p < 0.0005, p < 0.00005), respectively, while IL-8, IL-10, and TGF-ß were all upregulated in a significant manner for nanocomplex (p < 0.00005, p < 0.00005, p < 0.00005) and free drug treatment group (p < 0.00005, p < 0.05, p < 0.05) compared to the control untreated group. While in the GNR group, IL-6 and TNF-α were downregulated (p < 0.005, p < 0.00005), and IL-12p40 (p < 0.00005) was upregulated all in a statistically significant manner. While at protein level, cells were treated with our nanocomplex: IL-1ß, IL-6, TNF-α, and IL-12p70 and were significantly decreased (p < 0.00005,p < 0.005,p < 0.05,p < 0.00005), and IL-10 was found to be significantly increased in culture compared to the untreated control group (p < 0.005). For free drug; IL-1ß and IL-12p70 were significantly decreased (p < 0.00005, p < 0.00005), while a significant increase in the secretion levels of IL-10 only was noticed compared to the untreated group (p < 0.005). For GNR treatment groups, IL-1ß, TNF-α, and IL-12p70 were significantly decreased (p < 0.00005, p < 0.05, p < 0.00005). Conclusion: We can conclude that our nanocomplex is a potent effector that prevents tumoral progression by activating three main immunological strategies: switching the surface expression profile of the activated macrophages into a proinflammatory M1-like phenotype, downregulating the expression of proinflammatory cytokines, and upregulating the expression level of anti-inflammatory cytokines.


Assuntos
Ouro , Macrófagos , Citocinas/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Células THP-1
7.
Mol Divers ; 26(2): 1213-1225, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34553298

RESUMO

Diabetes mellitus is a main global health apprehension. Macrovascular illnesses, neuropathy, retinopathy, and nephropathy are considered some of its severe hitches. Gliptins are a group of hypoglycemic agents that inhibit dipeptidyl peptidase-IV (DPP-IV) enzyme and support blood glucose-lowering effect of incretins. In the current research, synthesis, characterization, docking, and biological evaluation of fourteen Schiff's bases 5a-f and 9a-h were carried out. Compound 9f revealed the best in vitro anti-DPP-IV activity of 35.7% inhibition at a concentration of 100 µM. Compounds 9c and 9f with the highest in vitro DPP-IV inhibition were subjected to the in vivo glucose-lowering test using vildagliptin as a positive inhibitor. Vildagliptin, 9c, and 9f showed significant reduction in the blood glucose levels of the treated mice after 30 min of glucose administration. Moreover, induced fit docking showed that these derivatives accommodated the enzyme binding site with comparable docking scores. Schiff's bases can serve as promising lead for the development of new DPP-IV inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/química , Camundongos , Vildagliptina
8.
Braz. J. Pharm. Sci. (Online) ; 58: e20028, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403695

RESUMO

Abstract Dyslipidemia is an abnormal lipid profile associated with many common diseases, including coronary heart disease and atherosclerosis. Cholesteryl ester transfer protein (CETP) is a hydrophobic plasma glycoprotein that is responsible for the transfer of cholesteryl ester from high-density lipoprotein athero-protective particles to pro-atherogenic very low-density lipoprotein and low-density lipoprotein particles. The requirement for new CETP inhibitors, which block this process has driven our current work. Here, the synthesis as well as the ligand-based and structure-based design of seven oxoacetamido-benzamides 9a-g with CETP inhibitory activity is described. An in vitro study demonstrated that most of these compounds have appreciable CETP inhibitory activity. Compound 9g showed the highest inhibitory activity against CETP with an IC50 of 0.96 µM. Glide docking data for compounds 9a-g and torcetrapib provide evidence that they are accommodated in the CETP active site where hydrophobic interactions drive ligand/CETP complex formation. Furthermore, compounds 9a-g match the features of known CETP active inhibitors, providing a rationale for their high docking scores against the CETP binding domain. Therefore, these oxoacetamido-benzamides show potential for use as novel CETP inhibitors


Assuntos
Benzamidas/efeitos adversos , Dislipidemias/complicações , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Técnicas In Vitro/métodos , Ésteres do Colesterol , Doença das Coronárias/patologia , Concentração Inibidora 50 , Lipoproteínas HDL/classificação , Lipoproteínas LDL/classificação
9.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641563

RESUMO

Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.


Assuntos
Inibidores da Monoaminoxidase/uso terapêutico , Neoplasias/enzimologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biologia Computacional , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Neoplasias/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade
10.
Expert Opin Ther Pat ; 31(10): 877-892, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33970742

RESUMO

Introduction: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a central role in regulating cell growth and proliferation and thus has been considered as effective anticancer drug targets. Many PI3K inhibitors have been developed and progressed to various stages of clinical trials, and some have been approved as anticancer treatment. In this review, we discuss the drug design and clinical development of PI3K inhibitors over the past 4 years. We review the selectivity and potency of 47 PI3K inhibitors. Structural determinants for increasing selectivity toward PI3K subtype-selectivity or mutant selectivity are discussed. Future research direction and current clinical development in combination therapy of inhibitors involved in PI3Ks are also discussed.Area covered: This review covers clinical trial reports and patent literature on PI3K inhibitors and their selectivity published between 2016 and 2020.Expert opinion: To PI3Kα mutants (E542K, E545K, and H1047R), it is highly desirable to design and develop mutant-specific PI3K inhibitors. It is also necessary to develop subtype-selective PI3Kα inhibitors to minimize toxicity. To reduce drug resistance and to improve efficacy, future studies should include combination therapy of PI3K inhibitors with existing anticancer drugs from different pathways.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Antineoplásicos/administração & dosagem , Desenho de Fármacos , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Patentes como Assunto , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
11.
Diagnostics (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919342

RESUMO

The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33574882

RESUMO

4-O-Podophyllotoxin sulfamate derivatives were prepared using the natural lignan podophyllotoxin. The prepared compounds were afforded by reacting O-sulfonyl chloride podophyllotoxin with ammonia or aminoaryl/heteroaryl motif. Biological evaluation was performed in human breast cancer (MCF7), ovarian cancer (A2780), colon adenocarcinoma (HT29), and normal lung fibroblast (MRC5) cell lines. Compound 3 exhibited potent inhibitory activity and good selectivity margin. Compounds 2, 3, and 7 exerted apoptotic effect in MCF7 cells in a dose-dependent manner. The cytotoxicity of the verified compounds was inferior to that of podophyllotoxin.

13.
Med Chem ; 17(9): 937-944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32940185

RESUMO

BACKGROUND: Diabetes mellitus is a serious global health issue, currently affecting 425 million people and is set to affect over 690 million people by 2045. It is a chronic disease characterized by hyperglycemia due to relative or absolute insulin hormone deficiency. Dipeptidyl peptidase- IV (DPP-IV) inhibitors are hypoglycemic agents augmenting the action of the incretin hormones that stimulate insulin secretion from the pancreatic beta cells. OBJECTIVE: In this study, synthesis and biological evaluation of seven piperazine derivatives 3a-g was carried out. METHODS: The synthesized molecules were characterized using proton-nuclear magnetic resonance, carbon-nuclear magnetic resonance, infrared spectroscopy and mass spectrometry. RESULTS: In vitro biological evaluation study showed comparable DPP-IV inhibitory activity for the targeted compounds ranging from 19%-30% at 100 µM concentration. Furthermore, the in vivo hypoglycemic activity of 3d was evaluated using streptozotocin-induced diabetic mice. It was found that compound 3d significantly decreased the blood glucose level when the diabetic group treated with 3d was compared to the control diabetic group. Quantum-Polarized Ligand Docking (QPLD) studies demonstrate that 3a-g fit the binding site of DPP-IV enzyme and form H-bonding with the backbones of R125, E205, E206, K554, W629, Y631, Y662, R669, and Y752. CONCLUSION: Piperazine derivatives were successfully found to be new scaffolds as potential DPP-IV inhibitors.


Assuntos
Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Piperazinas/química , Animais , Sítios de Ligação , Glicemia/metabolismo , Cristalografia por Raios X , Diabetes Mellitus Experimental/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/síntese química , Avaliação Pré-Clínica de Medicamentos , Hiperglicemia/tratamento farmacológico , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
14.
Acta Pharm ; 71(4): 545-565, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651560

RESUMO

Phosphoinositide 3-kinase α (PI3Kα) is a propitious target for designing anticancer drugs. A series of new N'-(diphenylmethylene)benzenesulfonohydrazide was synthesized and characterized using FT-IR, NMR (1H and 13C), HRMS, and elemental analysis. Target compounds exhibited an antiproliferative effect against the human colon carcinoma (HCT-116) cell line. Our cheminformatics analysis indicated that the para-tailored derivatives [p-NO2 (3) and p-CF3 (7)] have better ionization potentials based on calculated Moran autocorrelations and ionization potentials. Subsequent in vitro cell proliferation assays validated our cheminformatics results by providing experimental evidence that both derivatives 3 and 7 exhibited improved antiproliferative activities against HCT-116. Hence, our results emphasized the importance of electron-withdrawing groups and hydrogen bond-acceptors in the rational design of small-molecule chemical ligands targeting PI3Kα. These results agreed with the induced-fit docking against PI3Kα, highlighting the role of p-substituted aromatic rings in guiding the ligand-PI3Kα complex formation, by targeting a hydrophobic pocket in the ligand-binding site and forming π-stacking interactions with a nearby tryptophan residue.

15.
Acta Pharm ; 71(2): 175-184, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151168

RESUMO

Recently, an outbreak of a fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. Possible interaction of SARS-CoV-2 with DPP4 peptidase may partly contribute to the viral pathogenesis. An integrative bioinformatics approach starting with mining the biomedical literature for high confidence DPP4-protein/gene associations followed by functional analysis using network analysis and pathway enrichment was adopted. The results indicate that the identified DPP4 networks are highly enriched in viral processes required for viral entry and infection, and as a result, we propose DPP4 as an important putative target for the treatment of COVID-19. Additionally, our protein-chemical interaction networks identified important interactions between DPP4 and sitagliptin. We conclude that sitagliptin may be beneficial for the treatment of COVID-19 disease, either as monotherapy or in combination with other therapies, especially for diabetic patients and patients with pre-existing cardiovascular conditions who are already at higher risk of COVID-19 mortality.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Dipeptidil Peptidase 4/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico , COVID-19 , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/tratamento farmacológico , Biologia Computacional , Infecções por Coronavirus/complicações , Cristalografia por Raios X , Mineração de Dados , Complicações do Diabetes/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Reposicionamento de Medicamentos , Redes Reguladoras de Genes , Humanos , Estrutura Molecular , Pandemias , Pneumonia Viral/complicações
16.
Anticancer Agents Med Chem ; 21(6): 716-724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32767959

RESUMO

BACKGROUND: Cancer is a life-threatening group of diseases and universally, the second main cause of death. The design and development of new scaffolds targeting selective cancer cells are considered a promising goal for cancer treatment. AIMS AND OBJECTIVE: Chalcone derivatives; 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolone, were previously prepared and evaluated against the oral cavity squamous cell carcinoma cell line, HSC-2, and were reported to have remarkably high tumor selectivity. The aim of this study was to further investigate the anticancer activities of the chalcone derivatives against human colon cancer cells with a possible elucidation of their mechanism of action. METHODS: Computational studies were conducted to explore the potential interaction of the synthesized molecules with the phosphatidylinositol-4,5-bisphosphate 3-kinaseα (PI3Kα). Biological evaluation of the antiproliferative activities associated with compounds 1-23 was carried out against the colon cancer cell line, HCT116. Lactate Dehydrogenase (LDH) activity was measured to study necrosis, while the caspase-3 activation and DNA measurements were used to evaluate apoptosis in the treated cells. RESULTS: Glide studies against PI3Kα kinase domain demonstrated that the 6-(3-aryl-2-propenoyl)-2(3H)- benzoxazolone scaffold forms H-bond with K802, Y836, E849, V851, N853, Q859, and D933, and it fits the fingerprint of PI3Kα active inhibitors. Biological evaluation of the reported compounds in HCT116 cell line confirmed that the series inhibited PI3Kα activity and induced apoptosis via activation of caspase-3 and reduction of DNA content. CONCLUSION: The recently developed compounds might be employed as lead structures for the design of new antitumor drugs targeting PI3Kα.


Assuntos
Antineoplásicos/síntese química , Benzoxazóis/síntese química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/metabolismo , Desenho de Fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
17.
Curr Comput Aided Drug Des ; 17(6): 817-830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32814537

RESUMO

BACKGROUND: Drugs incorporating heterocyclic chemical skeletons possess a plethora of therapeutic activities such as anticancer, antimicrobial, antihypertensive, and antipsychiatric effects. It is becoming routine, nowadays, to use cheminformatics and bioinformatics methods to elucidate the mechanism(s) of action of such drugs. OBJECTIVE: This study aimed to probe the activity of a recently published series of N1- (anthraquinon-2-yl) amidrazone piperazine derivatives employing computational strategies[1], identify their structural basis of binding to BCR/ABL kinase domain, and explain their anticancer activities in human breast adenocarcinoma (MCF-7) and chronic myelogenous leukemia (K562) cell lines. METHODS: We applied an in silico integrative informatics approach integrating molecular descriptors, docking studies, cheminformatics, and network analysis. RESULTS: Our results highlighted the possible involvement of the BCR/ABL and DRD2 pathways in the anticancer activity of the studied compounds, and induced fit docking (IFD) indicated that the BCR/ABL kinase domain is a putative drug target. Additionally, high-scoring docking poses identified a unique network of hydrogen bonding with amino acids Y253, K271, E286, V299, L301, T315, M318, I360, R362, V379, and D3810. CONCLUSION: Using an integrative informatics approach to characterize our anticancer compounds, we were able to explain the biological differences between synthesized and biologically validated amidrazone piperazine anticancer agents. We were also able to postulate a mechanism of action of this novel group of anticancer agents.


Assuntos
Antineoplásicos , Proteínas de Fusão bcr-abl , Antineoplásicos/farmacologia , Humanos , Informática , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases
18.
Molecules ; 26(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375766

RESUMO

Cancer is a multifactorial disease and the second leading cause of death worldwide. Diverse factors induce carcinogenesis, such as diet, smoking, radiation, and genetic defects. The phosphatidylinositol 3-kinase (PI3Kα) has emerged as an attractive target for anticancer drug design. Eighteen derivatives of N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamide were synthesized and characterized using FT-IR, NMR (1H and 13C), and high-resolution mass spectra (HRMS). The series exhibited distinct antiproliferative activity (IC50 µM) against human epithelial colorectal adenocarcinoma (Caco-2) and colon carcinoma (HCT-116) cell lines, respectively: compounds 16 (37.4, 8.9 µM), 18 (50.9, 3.3 µM), 19 (17.0, 5.3 µM), and 21 (18.9, 4.9 µM). The induced-fit docking (IFD) studies against PI3Kαs showed that the derivatives occupy the PI3Kα binding site and engage with key binding residues.


Assuntos
Amidas/química , Neoplasias/tratamento farmacológico , Fatores de Transcrição/genética , Amidas/síntese química , Amidas/farmacologia , Células CACO-2 , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Quinolonas/química , Quinolonas/farmacologia
19.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207767

RESUMO

The emergence of phosphatidylinositol 3-kinase (PI3Kα) in cancer development has accentuated its significance as a potential target for anticancer drug design. Twenty one derivatives of N-phenyl-4-hydroxy-6-methyl-2-quinolone-3-carboxamide were synthesized and characterized using NMR (1H and 13C) and HRMS. The derivatives displayed inhibitory activity against human epithelial colorectal adenocarcinoma (Caco-2) and human colon cancer (HCT-116) cell lines: compounds 8 (IC50 Caco-2 = 98 µM, IC50 HCT-116 = 337 µM) and 16 (IC50 Caco-2 = 13 µM, IC50 HCT-116 = 240.2 µM). Results showed that compound 16 significantly affected the gene encoding AKT, BAD, and PI3K. The induced-fit docking (IFD) studies against PI3Kα demonstrated that the scaffold accommodates the kinase domains and forms H-bonds with significant binding residues.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Modelos Moleculares , Quinolonas/síntese química , Quinolonas/farmacologia , Antineoplásicos/química , Células CACO-2 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Componente Principal , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/química
20.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397063

RESUMO

Conjugating drugs with gold nanoparticles (GNP) is a key strategy in cancer therapy. Herein, the potential inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and other pathways of the MCF-7 cell-line, was investigated upon treatment with gold nanorods (GNR) conjugated with a PI3K inhibitor drug. The results revealed that the coupling of GNR with the drug drastically modulated the expression of PI3Kα at the gene and protein levels compared to the drug or GNR alone. The PI3Kα pathway is involved in tumor progression and development through the mediation of different mechanisms such as apoptosis, proliferation, and DNA damage. Treatment with the nanocomplex significantly affected the gene expression of several transcription factors responsible for cell growth and proliferation, apoptotic pathways, and cell cycle arrest. Furthermore, the gene expression of different regulatory proteins involved in cancer progression and immune responses were significantly modified upon treatment with the nanocomplex compared to the free drug or GNR alone.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ouro/uso terapêutico , Nanopartículas Metálicas/química , Nanotubos/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Neoplasias da Mama/patologia , Feminino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Ouro/química , Humanos , Proteínas I-kappa B/metabolismo , Células MCF-7 , Nanopartículas Metálicas/uso terapêutico , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA