Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Bioorg Chem ; 151: 107680, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39084151

RESUMO

Breast cancer poses a significant health risk worldwide. However, the effectiveness of current chemotherapy is limited due to increasing drug resistance and side effects, making it crucial to develop new compounds with novel mechanism of action that can surpass these limitations. As a consequence of their reversible and targeted mechanism, DNA minor groove binders (MGBs) are considered as a relatively safer and more effective alternative. In this study, transcriptomic analysis was conducted to reveal the dysregulated genes and signaling pathways in MCF7 cancer cells following treatment with novel MGB ligands to gain insights into the mechanism of action of MGBs at the molecular level. The transcriptomic results were validated using real-time PCR. The findings of this study indicate that the investigated MGBs primarily inhibit the genes associated with the estrogen receptor. Remarkably, ligand 5 showed downregulation of 34 out of the 35 genes regulated by estrogen receptor, highlighting its potential as a promising candidate for breast cancer therapy.

3.
NPJ Precis Oncol ; 8(1): 128, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839871

RESUMO

Metastatic cancer remains incurable as patients eventually loose sensitivity to targeted therapies and chemotherapies, further leading to poor clinical outcome. Thus, there is a clear medical gap and urgent need to develop efficient and improved targeted therapies for cancer patients. In this study, we investigated the role of DYRK1A kinase in regulating cancer progression and evaluated the therapeutic potential of DYRK1A inhibition in invasive solid tumors, including colon and triple-negative breast cancers. We uncovered new roles played by the DYRK1A kinase. We found that blocking DYRK1A gene expression or pharmacological inhibition of its kinase activity via harmine efficiently blocked primary tumor formation and the metastatic tumor spread in preclinical models of breast and colon cancers. Further assessing the underlying molecular mechanisms, we found that DYRK1A inhibition resulted in increased expression of the G1/S cell cycle regulators while decreasing expression of the G2/M regulators. Combined, these effects release cancer cells from quiescence, leading to their accumulation in G1/S and further delaying/preventing their progression toward G2/M, ultimately leading to growth arrest and tumor growth inhibition. Furthermore, we show that accumulation of cancer cells in G1/S upon DYRK1A inhibition led to significant potentiation of G1/S targeting chemotherapy drug responses in vitro and in vivo. This study underscores the potential for developing novel DYRK1A-targeting therapies in colon and breast cancers and, at the same time, further defines DYRK1A pharmacological inhibition as a viable and powerful combinatorial treatment approach for improving G1/S targeting chemotherapy drugs treatments in solid tumors.

4.
Cells ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667300

RESUMO

Interleukin-6 (IL6) is a pleiotropic cytokine implicated in metabolic disorders and inflammation, yet its precise influence on insulin secretion and glucose metabolism remains uncertain. This study examined IL6 expression in pancreatic islets from individuals with/without diabetes, alongside a series of functional experiments, including siRNA silencing; IL6 treatment; and assessments of glucose uptake, cell viability, apoptosis, and expression of key ß-cell genes, which were conducted in both INS-1 cells and human islets to elucidate the effect of IL6 on insulin secretion. Serum levels of IL6 from Emirati patients with type 2 diabetes (T2D) were measured, and the effect of antidiabetic drugs on IL6 levels was studied. The results revealed that IL6 mRNA expression was higher in islets from diabetic and older donors compared to healthy or young donors. IL6 expression correlated negatively with PDX1, MAFB, and NEUROD1 and positively with SOX4, HES1, and FOXA1. Silencing IL6 in INS-1 cells reduced insulin secretion and glucose uptake independently of apoptosis or oxidative stress. Reduced expression of IL6 was associated with the downregulation of Ins, Pdx1, Neurod1, and Glut2 in INS-1 cells. In contrast, IL6 treatment enhanced insulin secretion in INS-1 cells and human islets and upregulated insulin expression. Serum IL6 levels were elevated in patients with T2D and associated with higher glucose, HbA1c, and triglycerides, regardless of glucose-lowering medications. This study provides a new understanding of the role of IL6 in ß-cell function and the pathophysiology of T2D. Our data highlight differences in the response to IL6 between INS-1 cells and human islets, suggesting the presence of species-specific variations across different experimental models. Further research is warranted to unravel the precise mechanisms underlying the observed effects of IL-6 on insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Interleucina-6 , Ilhotas Pancreáticas , Humanos , Interleucina-6/metabolismo , Interleucina-6/sangue , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Glucose/metabolismo , Insulina/metabolismo , Insulina/sangue , Ratos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Linhagem Celular , Idoso , Apoptose/efeitos dos fármacos
6.
Horm Metab Res ; 56(4): 261-271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387480

RESUMO

The preservation of pancreatic islet ß-cells is crucial in diabetes mellitus, encompassing both type 1 and type 2 diabetes. ß-cell dysfunction, reduced mass, and apoptosis are central to insufficient insulin secretion in both types. Research is focused on understanding ß-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. In type 1 diabetes (T1D), ß-cell destruction by the immune system calls for exploring immunosuppressive therapies, non-steroidal anti-inflammatory drugs, and leukotriene antagonists. Islet transplantation, stem cell therapy, and xenogeneic transplantation offer promising strategies for type 1 diabetes treatment. For type 2 diabetes (T2D), lifestyle changes like weight loss and exercise enhance insulin sensitivity and maintain ß-cell function. Additionally, various pharmacological approaches, such as cytokine inhibitors and protein kinase inhibitors, are being investigated to protect ß-cells from inflammation and glucotoxicity. Bariatric surgery emerges as an effective treatment for obesity and T2D by promoting ß-cell survival and function. It improves insulin sensitivity, modulates gut hormones, and expands ß-cell mass, leading to diabetes remission and better glycemic control. In conclusion, preserving ß-cells offers a promising approach to managing both types of diabetes. By combining lifestyle modifications, targeted pharmacological interventions, and advanced therapies like stem cell transplantation and bariatric surgery, we have a significant chance to preserve ß-cell function and enhance glucose regulation in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Insulina/metabolismo
7.
iScience ; 27(1): 108659, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38235331

RESUMO

The development of hybrid compounds has been widely considered as a promising strategy to circumvent the difficulties that emerge in cancer treatment. The well-established strategy of adding acetyl groups to certain drugs has been demonstrated to enhance their therapeutic efficacy. Based on our previous work, an approach of accommodating two chemical entities into a single structure was implemented to synthesize new acetylated hybrids (HH32 and HH33) from 5-aminosalicylic acid and 4-thiazolinone derivatives. These acetylated hybrids showed potential anticancer activities and distinct metabolomic profile with antiproliferative properties. The in-silico molecular docking predicts a strong binding of HH32 and HH33 to cell cycle regulators, and transcriptomic analysis revealed DNA repair and cell cycle as the main targets of HH33 compounds. These findings were validated using in vitro models. In conclusion, the pleiotropic biological effects of HH32 and HH33 compounds on cancer cells demonstrated a new avenue to develop more potent cancer therapies.

8.
Front Pharmacol ; 14: 1166653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056985

RESUMO

Background: Pyroptosis is an inflammatory programmed cell death accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. Pyroptosis is closely linked to the development of diabetic cardiomyopathy (DC). Pomegranate peel extract (PPE) exhibits a cardioprotective effect due to its antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanisms of the protective effect of PPE on the myocardium in a rat model of DC and determine the underlying molecular mechanism. Methods: Type 1 diabetes (T1DM) was induced in rats by intraperitoneal injection of streptozotocin. The rats in the treated groups received (150 mg/kg) PPE orally and daily for 8 weeks. The effects on the survival rate, lipid profile, serum cardiac troponin-1, lipid peroxidation, and tissue fibrosis were assessed. Additionally, the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue was determined. The PPE was analyzed using UPLC-MS/MS and NMR for characterizing the phytochemical content. Results: Prophylactic treatment with PPE significantly ameliorated cardiac hypertrophy in the diabetic rats and increased the survival rate. Moreover, prophylactic treatment with PPE in the diabetic rats significantly improved the lipid profile, decreased serum cardiac troponin-1, and decreased lipid peroxidation in the myocardial tissue. Histopathological examination of the cardiac tissues showed a marked reduction in fibrosis (decrease in collagen volume and number of TGF-ß-positive cells) and preservation of normal myocardial structures in the diabetic rats treated with PPE. There was a significant decrease in the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue of the diabetic rats treated with PPE. In addition, the concentration of IL-1ß and caspase-1 significantly decreased in the heart tissue of the same group. The protective effect of PPE on diabetic cardiomyopathy could be due to the inhibition of pyroptosis and downregulation of lncRNA-MALAT1. The phytochemical analysis of the PPE indicated that the major compounds were hexahydroxydiphenic acid glucoside, caffeoylquinic acid, gluconic acid, citric acid, gallic acid, and punicalagin. Conclusion: PPE exhibited a cardioprotective potential in diabetic rats due to its unique antioxidant, anti-inflammatory, and antifibrotic properties and its ability to improve the lipid profile. The protective effect of PPE on DC could be due to the inhibition of the NLRP3/caspase-1/IL-1ß signaling pathway and downregulation of lncRNA-MALAT1. PPE could be a promising therapy to protect against the development of DC, but further clinical studies are recommended.

9.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362270

RESUMO

The activity of cytochrome P450 enzymes is influenced by genetic and nongenetic factors; hence, the metabolism of exogenous psychotropic medications and potentially some endogenous neuropeptides is variably affected among different ethnic groups of psychiatric patients. The aim of this review is to highlight the most common cytochrome P450 isoenzymes associated with the metabolism of psychotropic medications (antidepressants, antipsychotics, and mood stabilizers), their variations among different populations, their impact on endogenous neurotransmitters (dopamine and serotonin), and the effect of nongenetic factors, particularly smoking, age, and pregnancy, on their metabolic activity. Furthermore, the adverse effects of psychiatric medications may be associated with certain human leukocytic antigen (HLA) genotypes. We also highlight the gene variants that may potentially increase susceptibility to obesity and metabolic syndrome, as the adverse effects of some psychiatry medications. Collectively, the literature revealed that variation of CYP450 activity is mostly investigated in relation to genetic polymorphism, and is directly correlated with individualized clinical outcomes; whereas adverse effects are associated with HLA variants, projecting the value of pharmacogenetics implementation in psychiatry clinics. Only a few previous studies have discussed the impact of such genetic variations on the metabolism of endogenous neuropeptides. In this review, we also report on the prevalence of key variants in different ethnicities, by demonstrating publicly available data from the 1000 Genomes Project and others. Finally, we highlight the future direction of further investigations to enhance the predictability of the individual gene variants to achieve precision therapies for psychiatric patients.


Assuntos
Farmacogenética , Psiquiatria , Humanos , Citocromo P-450 CYP2D6/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Psicotrópicos/efeitos adversos , Psicotrópicos/metabolismo
10.
Front Med (Lausanne) ; 9: 959348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160153

RESUMO

Colorectal cancer (CRC) is considered as a global major cause of cancer death. Surgical resection is the main line of treatment; however, chemo-, radiotherapy and other adjuvant agents are crucial to achieve good outcomes. The tumor microenvironment (TME) is a well-recognized key player in CRC progression, yet the processes linking the cancer cells to its TME are not fully delineated. Autophagy is one of such processes, with a controversial role in the pathogenesis of CRC, with its intricate links to many pathological factors and processes. Autophagy may apparently play conflicting roles in carcinogenesis, but the precise mechanisms determining the overall direction of the process seem to depend on the context. Additionally, it has been established that autophagy has a remarkable effect on the endothelial cells in the TME, the key substrate for angiogenesis that supports tumor metastasis. Favorable response to immunotherapy occurs only in a specific subpopulation of CRC patients, namely the microsatellite instability-high (MSI-H). In view of such limitations of immunotherapy in CRC, modulation of autophagy represents a potential adjuvant strategy to enhance the effect of those relatively safe agents on wider CRC molecular subtypes. In this review, we discussed the molecular control of autophagy in CRC and how autophagy affects different processes and mechanisms that shape the TME. We explored how autophagy contributes to CRC initiation and progression, and how it interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk between autophagy and the TME in CRC was extensively dissected. Finally, we reported the clinical efforts and challenges in combining autophagy modulators with various cancer-targeted agents to improve CRC patients' survival and restrain cancer growth.

11.
Front Med (Lausanne) ; 9: 955599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072957

RESUMO

Colorectal cancer (CRC) is one of the most prevalent cancer types worldwide, with a high mortality rate due to metastasis. The tumor microenvironment (TME) contains multiple interactions between the tumor and the host, thus determining CRC initiation and progression. Various immune cells exist within the TME, such as tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs). The immunotherapy approach provides novel opportunities to treat solid tumors, especially toward immune checkpoints. Despite the advances in the immunotherapy of CRC, there are still obstacles to successful treatment. In this review, we highlighted the role of these immune cells in CRC, with a particular emphasis on immune checkpoint molecules involved in CRC pathogenesis.

12.
Front Oncol ; 12: 877147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707368

RESUMO

Colorectal cancer (CRC) represents around 10% of all cancers, with an increasing incidence in the younger age group. The gut is considered a unique organ with its distinctive neuronal supply. The neuropeptide, human galanin, is widely distributed in the colon and expressed in many cancers, including the CRC. The current study aimed to explore the role of galanin at different stages of CRC. Eighty-one CRC cases (TNM stages I - IV) were recruited, and formalin-fixed paraffin-embedded samples were analyzed for the expression of galanin and galanin receptor 1 (GALR1) by immunohistochemistry (IHC). Galanin intensity was significantly lower in stage IV (n= 6) in comparison to other stages (p= 0.037 using the Mann-Whitney U test). Whole transcriptomics analysis using NGS was performed for selected samples based on the galanin expression by IHC [early (n=5) with high galanin expression and late (n=6) with low galanin expression]. Five differentially regulated pathways (using Absolute GSEA) were identified as drivers for tumor progression and associated with higher galanin expression, namely, cell cycle, cell division, autophagy, transcriptional regulation of TP53, and immune system process. The top shared genes among the upregulated pathways are AURKA, BIRC5, CCNA1, CCNA2, CDC25C, CDK2, CDK6, EREG, LIG3, PIN1, TGFB1, TPX2. The results were validated using real-time PCR carried out on four cell lines [two primaries (HCT116 and HT29) and two metastatic (LoVo and SK-Co-1)]. The current study shows galanin as a potential negative biomarker. Galanin downregulation is correlated with advanced CRC staging and linked to cell cycle and division, autophagy, transcriptional regulation of TP53 and immune system response.

13.
Front Oncol ; 12: 918340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747793

RESUMO

Background: Numerous clinical and experimental observations have alluded to the substantial anti-neoplastic role of vitamin D in breast cancer (BC), primarily by inducing apoptosis and affecting metastasis. Tumor progression and resistance to chemotherapy have been linked to vasculogenic mimicry (VM), which represents the endothelial-independent formation of microvascular channels by cancer cells. However, the effect of vitamin D on VM formation in BC has not been thoroughly investigated. This study examined the impact of 1α,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, on the expression of major factors involved in BC migration, invasion, and VM formation. Experimental Methods: Publicly available transcriptomic datasets were used to profile the expression status of the key VM markers in vitamin D-treated BC cells. The in silico data were validated by examining the expression and activity of the key factors that are involved in tumor progression and MV formation in hormone-positive MCF-7 and aggressive triple-negative MDA-MB-231 BC cells after treatment with calcitriol. Results and Discussions: The bioinformatics analysis showed that tumor VM formation-enriched pathways were differentially downregulated in vitamin D-treated cells when compared with control counterparts. Treatment of BC cells with calcitriol resulted in increased expression of tissue inhibitors of metalloproteinases (TIMPs 1 and 2) and decreased content and gelatinolytic activity of matrix metalloproteinases (MMPs 2 and 9). Furthermore, calcitriol treatment reduced the expression of several pro-MV formation regulators including vascular endothelial growth factor (VEGF), tumor growth factor (TGF-ß1), and amphiregulin. Eventually, this process resulted in a profound reduction in cell migration and invasion following the treatment of BC cells with calcitriol when compared to the controls. Finally, the formation of VM was diminished in the aggressive triple-negative MDA-MB-231 cancer cell line after calcitriol treatment. Conclusion: Our findings demonstrate that vitamin D mediates its antitumor effects in BC cells by inhibiting and curtailing their potential for VM formation.

14.
Front Immunol ; 13: 865845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529862

RESUMO

Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.


Assuntos
COVID-19 , Citocinas , Progressão da Doença , Humanos , Pandemias , SARS-CoV-2 , Índice de Gravidade de Doença
15.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35457226

RESUMO

Background: Breast cancer currently affects more than two million women worldwide, and its incidence is steadily increasing. One of the most essential factors of invasion and metastasis of breast cancer cells is angiogenesis and non-angiogenic vascularization. Lenvatinib and Regorafenib share the same anti-angiogenic effect by inhibiting vascular endothelial growth factor receptors (VEGFRs subtypes 1 to 3) and have been approved for treating different types of cancer. Methods: We investigated Lenvatinib and Regorafenib effects on a well-established in-vitro model of breast cancer using MCF-7 (estrogen, progesterone receptor-positive, and HER2-negative), MDA-MB-231 (triple negative), as well as Human Umbilical Vascular Endothelial Cell line (HUVEC) cell lines. We performed the cell viability assay on four groups of cells, which included a control group, a Lenvatinib treated only group, a Regorafenib treated only group, and a group treated with a combination of both drugs at 24, 48, and 72 h. Data were analyzed as means ± standard deviation, and the drug−drug interactions with Compusyn software. Cellular migration assay, tube formation assay, and Western blots were conducted to determine the functional and the protein expression of downstream signals such as Caspase-9, anti-apoptotic Survivin, P-ERK, and total-ERK in the control and treatment groups. Results: MCF-7 cells showed a reduction in cell survival rates with higher dosing and longer incubation periods with each drug and with the combination of drugs. A synergistic interaction was identified (CI < 1) with both drugs on MCF7 at different dose combinations and at a higher dose in MDA-MB-231 cells. Furthermore, there was a marked decrease in the anti-angiogenic effect of both drugs in tube formation assay using MDA-MB-231 cells and survivin protein expression in MCF-7, and those antitumor markers showed a better outcome in drug combination than the use of each drug alone. Conclusion: Our result is the first to report the synergistic anti-angiogenic potential of combination therapy of Lenvatinib and Regorafenib. Therefore, it shows their therapeutic potential in breast cancer, including the aggressive types. Further studies are warranted to confirm and explore this therapeutic approach.


Assuntos
Neoplasias da Mama , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neovascularização Patológica/tratamento farmacológico , Compostos de Fenilureia , Piridinas , Quinolinas , Survivina , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Front Immunol ; 13: 810993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173724

RESUMO

Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.


Assuntos
Neoplasias Colorretais/imunologia , Proteínas do Sistema Complemento/fisiologia , Imunoterapia/métodos , Animais , Neoplasias Colorretais/terapia , Ativação do Complemento , Humanos
17.
Neoplasia ; 24(2): 76-85, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952246

RESUMO

Colorectal Cancer (CRC) with Microsatellite instability (MSI) and mutLhomolog-1 (MLH1) gene deficiency are less aggressive than MLH1 proficient cancers. MLH1 is involved in several cellular processes, but its connection with the autophagy-dependent cellular response towards anticancer drugs remains unclear. In this study, we aimed to investigate the interaction between MLH1 and the autophagy marker LC3, which facilitated nucleophagy induction, and its potential role in determining sensitivity to 5-Fluorouracil (5-FU) induced cell death. To examine the role of MLH1 in DNA-damage-induced nucleophagy in CRC cells, we utilized a panel of MLH1 deficient and MLH1 proficient CRC cell lines. We included a parental HCT116 cell line (MLH1-/-) and its isogenic cell line HCT116 MLH1+/- in which a single allele of the MLH1 gene was introduced using CRISPR-Cas9 gene editing. We observed that MLH1 proficient cells were less sensitive to the 5-FU-induced cytotoxic effect. The 5-FU induced DNA damage led to LC3 up-regulation, which was dependent on MLH1 overexpression. Moreover, immunofluorescence and immunoprecipitation data showed LC3 and MLH1 were colocalized in CRC cells. Consequently, MLH1 dependent 5-FU-induced DNA damage contributed to the formation of micronuclei. These micronuclei colocalize with autolysosome, indicating a cytoprotective role of MLH1 dependent nucleophagy. Interestingly, siRNA knockdown of MLH1 in HCT116 MLH1+/- prevented LC3 upregulation and micronuclei formation. These novel data are the first to show an essential role of MLH1 in mediating the chemoresistance and survival of cancer cells by increasing the LC3 expression and inducing nucleophagy in 5-FU treated CRC cells.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias Colorretais/genética , Citoproteção/genética , Fluoruracila/farmacologia , Proteína 1 Homóloga a MutL/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos
18.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769131

RESUMO

Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Epigênese Genética , Código das Histonas , Histonas/metabolismo , Terapia de Alvo Molecular , Animais , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos
19.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638560

RESUMO

The most frequent mutated oncogene family in the history of human cancer is the RAS gene family, including NRAS, HRAS, and, most importantly, KRAS. A hallmark of pancreatic cancer, recalcitrant cancer with a very low survival rate, is the prevalence of oncogenic mutations in the KRAS gene. Due to this fact, studying the function of KRAS and the impact of its mutations on the tumor microenvironment (TME) is a priority for understanding pancreatic cancer progression and designing novel therapeutic strategies for the treatment of the dismal disease. Despite some recent enlightening studies, there is still a wide gap in our knowledge regarding the impact of KRAS mutations on different components of the pancreatic TME. In this review, we will present an updated summary of mutant KRAS role in the initiation, progression, and modulation of the TME of pancreatic ductal adenocarcinoma (PDAC). This review will highlight the intriguing link between diabetes mellitus and PDAC, as well as vitamin D as an adjuvant effective therapy via TME modulation of PDAC. We will also discuss different ongoing clinical trials that use KRAS oncogene signaling network as therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/imunologia , Complicações do Diabetes/genética , Humanos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral
20.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202668

RESUMO

Diabetic kidney disease (DKD) is still one of the unresolved major complications of diabetes mellitus, which leads ultimately to end-stage renal disease in both type 1 and type 2 diabetes patients. Available drugs that suppress the renin-angiotensin system have partially minimized the disease impact. Yet, there is an unmet need for new therapeutic interventions to protect the kidneys of diabetic patients. In DN, glomerular sclerosis and tubulointerstitial fibrosis are mediated through several pathways, of which JAK/STAT is a key one. The current study explored the potential renoprotective effect of the JAK1/JAK2 inhibitor ruxolitinib (at doses of 0.44, 2.2, and 4.4 mg·kg-1) compared to that of enalapril at a dose of 10 mg·kg-1, in a rat model of streptozotocin-induced diabetes mellitus over 8 weeks. The effect of ruxolitinib was assessed by determining urinary albumin/creatinine ratio, serum level of cystatin, and levels of TGF-ß1, NF-κB, and TNF-α in renal tissue homogenates by biochemical assays, the glomerular sclerosis and tubulointerstitial fibrosis scores by histological analysis, and fibronectin, TGF-ß1, and Vimentin levels by immunohistochemical staining with the respective antibodies. Our results revealed a significant early favorable effect of a two-week ruxolitinib treatment on the renal function, supported by a decline in the proinflammatory biomarkers of DKD. This pre-clinical study suggests that the renoprotective effect of ruxolitinib in the long term should be investigated in animals, as this drug may prove to be a potential option for the treatment of diabetic kidney disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA