Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 69(4): e29514, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34939314

RESUMO

BACKGROUND: Mature aggressive B-cell lymphomas are heterogenous malignancies that make up more than half of all diagnosed non-Hodgkin lymphoma in children and adolescents. The overall survival rate increased over the last decades to 80%-90% due to fine tuning of polychemotherapy. However, new therapeutic implications are needed to further increase the overall survival. Current clinical trials analyze the therapeutic effect of rituximab in pediatric patients, while the mechanism of action in vivo is still not fully understood. METHODS: Effector molecules important for tumor defense were analyzed before and at day 5 after rituximab treatment via flow cytometry. Serum rituximab levels were measured with an ELISA. RESULTS: We evaluated patient parameters that may affect treatment response in relation to rituximab administration and serum rituximab levels. We indeed found a reduction of Fcγ receptor (FcγR) II levels after rituximab treatment in monocyte subtypes, whereas FcγRI expression was significantly increased. Serum levels of proinflammatory marker proteins S100A8/A9 and S100A12 significantly decreased after treatment to normal levels from an overall proinflammatory state before treatment. CD57, perforin, and granzyme B expression decreased after treatment, comprising a less cytolytic natural killer (NK) cell population. CONCLUSION: The highlighted effects of rituximab treatment on patient's immune response help in understanding the biology behind tumor defense mechanisms and effector function. After subsequent studies, these novel insights might be translated into patient care and could contribute to improve treatment of pediatric patients with mature aggressive B-cell lymphoma.


Assuntos
Linfoma de Células B , Linfoma não Hodgkin , Adolescente , Criança , Humanos , Células Matadoras Naturais , Linfoma de Células B/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Receptores de IgG , Rituximab/uso terapêutico
2.
Infect Immun ; 84(9): 2482-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297392

RESUMO

Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side.


Assuntos
Quimiocina CXCL1/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli/metabolismo , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Probióticos/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Monócitos/microbiologia , NF-kappa B/metabolismo
3.
PLoS One ; 6(8): e23300, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21853108

RESUMO

Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.


Assuntos
Genes env/genética , HIV-1/genética , Temperatura Alta , Peptídeos/metabolismo , RNA Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Calorimetria , Dicroísmo Circular , Entropia , Fluorescência , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico/efeitos da radiação , Desnaturação de Ácido Nucleico/efeitos da radiação , Peptídeos/química , Ligação Proteica/efeitos da radiação , Estabilidade Proteica/efeitos da radiação , RNA Viral/química , Titulometria , Raios Ultravioleta
4.
J Phys Chem B ; 114(34): 11155-63, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20687526

RESUMO

RNA-peptide interactions have been intensively studied at the structural level; however, in the absence of thermodynamic studies, the molecular forces that dictate the binding specificities and affinities remain elusive. Here we evaluate the thermodynamics (DeltaG, DeltaH, DeltaS) of HIV-1 TAR RNA hairpin and Tat peptide interaction as well as the hydration changes that accompany these interactions, through a series of calorimetric, spectroscopic, and osmotic stress studies. Tat peptide binding enhances the thermal stability of the TAR RNA hairpin; however, the thermal enhancement decreases with increasing Na(+) concentration. The equilibrium association constant (K(a)) is determined by fluorescence titrations and examined as a function of Na(+) concentration and temperature. The binding constant (K(a)) decreases with increasing Na(+) concentration. The binding free energy (DeltaG) is found to have a large nonpolyelectrolyte component with release of a single counterion upon binding. The ITC profiles showed two independent sites binding, indicating specific as well as nonspecific interactions. The enthalpy changes associated with both the binding sites are found to be more negative for the binding process at lower salt concentration of 20 mM Na(+). Our binding studies under osmotic stress conditions show that there is a release of 28 (+/-4) and 21 (+/-3) water molecules upon complex formation at 20 and 80 mM Na(+) concentration supporting the observed positive entropy contributions and accounting for discrepancies between DeltaH(cal) and DeltaH(vH). In aggregate, our results suggest that the hydrogen bonding of arginine to TAR RNA dictates the binding interaction.


Assuntos
RNA Viral/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Calorimetria , Dicroísmo Circular , Humanos , Ligação de Hidrogênio , Peptídeos/química , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA