Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649007

RESUMO

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Assuntos
Benzoquinonas , Proteínas Estimuladoras de Ligação a CCAAT , Reparo do DNA , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitinação/efeitos dos fármacos , Benzoquinonas/farmacologia , Reparo do DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos
2.
Int J Pharm ; 655: 124052, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552751

RESUMO

Antimicrobial peptides (AMPs) are promising novel agents for targeting a wide range of pathogens. In this study, microalgal peptides derived from native microalgae were incorporated into polycaprolactone (PCL) with ƙ-Carrageenan (ƙ-C) forming nanofibers using the electrospinning method. The peptides incorporated in the nanofibers were characterized by fourier infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy (SEM), and contact angle measurement. The results showed that peptides with molecular weights < 10 kDa, when loaded into nanofibers, exhibited lower wettability. The SEM analysis revealed a thin, smooth, interconnected bead-like structures. The antimicrobial activity of the electrospun nanofibers was evaluated through disc diffusion, and minimum inhibitory activity against Escherichia coli (MTTC 443), and Staphylococcus aureus (MTTC 96), resulting in zones of inhibition of 24 ± 0.5 mm and 14 ± 0.5 mm, respectively. The in vitro biocompatibility of the synthesized nanofibers was confirmed using in HEK 293 cell lines with an increased cell viability. Interestingly, the fibers also exhibited a significant wound-healing properties when used in vitro scratch assays. In conclusion, algal peptides incorporated with PCL/ ƙ-C were found to exhibit antimicrobial and biocompatible biomaterials for wound healing applications.


Assuntos
Anti-Infecciosos , Microalgas , Nanofibras , Humanos , Carragenina , Nanofibras/química , Células HEK293 , Antibacterianos/farmacologia , Poliésteres/química , Cicatrização , Anti-Infecciosos/farmacologia , Peptídeos/farmacologia
3.
J Exp Clin Cancer Res ; 42(1): 301, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957685

RESUMO

BACKGROUND: Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS: Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS: Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS: Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.


Assuntos
Reparo do DNA , Retroelementos , Humanos , Reparo de Erro de Pareamento de DNA , Proteínas Recombinantes/genética , Metilação de DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo
4.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836092

RESUMO

The pharmacological and preventive attributes of extracts from vegetable seeds have garnered widespread recognition within the scientific community. This study systematically assessed the in vitro antibacterial, antioxidant, and anti-breast cancer properties of phytochemicals present in various solvent-based vegetable seed extracts. We also conducted molecular docking simulations to ascertain their interactions with specific target proteins. Besides, nine distinct chemical constituents were identified using gas chromatography-mass spectrometry (GCMS). Remarkably, the ethyl acetate extract exhibited robust inhibitory effects against Gram-positive and Gram-negative bacterial strains. Furthermore, its capacity for 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging was found to be noteworthy, with an IC50 value of 550.82 ± 1.7 µg/mL, representing a scavenging efficiency of 64.1 ± 2.8%. Additionally, the ethyl acetate extract demonstrated significant hydrogen peroxide (H2O2) scavenging activity, with a maximal scavenging rate of 44.1 ± 1.70% (IC50) at a concentration of 761.17 ± 1.8 µg/mL. Intriguingly, in vitro cytotoxicity assays against human breast cancer (MCF-7) cells revealed varying levels of cell viability at different extract concentrations, suggesting potential anticancer properties. Importantly, these ethyl acetate extracts did not display toxicity to L929 cells across the concentration range tested. Subsequently, we conducted in-silico molecular docking experiments utilizing Discovery Studio 4.0 against the c-Met kinase protein (hepatocyte growth factor; PDB ID: 1N0W). Among the various compounds assessed, 3,4-Dihydroxy-1,6-bis-(3-methoxy-phenyl)-hexa-2,4-diene-1,6-dione exhibited a notable binding energy of -9.1 kcal/mol, warranting further investigation into its potential anticancer properties, clinical applications, and broader pharmacological characteristics.

5.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895966

RESUMO

Nanotherapeutics have attracted tremendous research interest in the modern pharmaceutical and biomedical industries due to their potential for drug development, targeted delivery, and therapeutic applications. Therefore, the current study underpins the synthesis of praseodymium ion (Pr3+)-substituted Ni0.5Co0.5Fe2O4 nano-spinel ferrites, (Co0.5Ni0.5PrxFe2-xO4 (0.0 ≤ x ≤ 0.10) NSFs, CoNiPr (x ≤ 0.10) NSFs) via the sonochemical route for its application as a nanotherapeutic treatment option. The synthesized nanomaterial was characterized using various analytical techniques, including scanning/transmission electron microscopy (SEM) and X-ray powder diffractometry (XRD). After substitution with Pr (x = 0.08), the particle size, polydispersity index, and zeta potential analysis indicated an increase in hydrodynamic diameter, with an average zeta potential value of -10.2 mV. The investigation of CoNiPr (x ≤ 0.10) NSFs on colorectal cancer (HCT-116) cells demonstrated a significant effect on cancer cell viability. The inhibitory concentration (IC50) of CoNiPr (x ≤ 0.10) NSFs was between 46 ± 0.91 and 288 ± 8.21 for HCT-116 cells. The effect of CoNiPr (x ≤ 0.10) NSFs on normal human embryonic kidney (HEK-293) cells showed a reduction in the HEK-293 cell viability; however, the cell viability was better than HCT-116. The NSFs treatment also showed morphological changes in cancer cell nuclei, as revealed by DAPI (4',6-diamidino-2-phenylindole), nuclear disintegration, and chromatic fragmentation, which are signs of apoptosis or programmed cell death. To examine the potential antifungal effects of CoNiPr NSFs on Candida albicans, known to cause candidemia among cancer patients, the viability of the cells was assessed post treatment with CoNiPr (x ≤ 0.10) NSFs. The increasing ratio of dopant had a moderate impact on the percentage of cell viability loss of 42, 44, and 43% with x = 0.06, 0.08, and 0.10, respectively. These results reinforce that increased dopant significantly impacts the antifungal properties of the synthesized nanomaterial. These findings support the idea that NSFs might be useful in pharmaceuticals.

6.
Front Pharmacol ; 14: 1213824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521476

RESUMO

The revolution of biomedical applications has opened new avenues for nanotechnology. Zinc Chromium vanadate nanoparticles (VCrZnO4 NPs) have emerged as an up-and-coming candidate, with their exceptional physical and chemical properties setting them apart. In this study, a one-pot solvothermal method was employed to synthesize VCrZnO4 NPs, followed by a comprehensive structural and morphological analysis using a variety of techniques, including X-Ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Energy-dispersive X-ray, and X-ray photoelectron spectroscopy. These techniques confirmed the crystallinity of the NPs. The VCrZnO4 NPs were tested for their antibacterial activity against primary contaminants such as Enterobacteriaceae, including Shigella flexneri, Salmonella cholerasis, and Escherichia coli, commonly found in hospital settings, using the broth dilution technique. The results indicated a stronger antibacterial activity of VCrZnO4 NPs against Shigella and Salmonella than E. coli. Electron microscopy showed that the NPs caused severe damage to the bacterial cell wall and membrane, leading to cell death. In addition, the study evaluated the anticancer activities of the metal complexes in vitro using colorectal cancer cells (HCT-116) and cervical cancer cells (HELA), along with non-cancer cells and human embryonic kidney cells (HEK-293). A vanadium complex demonstrated efficient anticancer effects with half-inhibitory concentrations (IC50) of 38.50+3.50 g/mL for HCT-116 cells and 42.25+4.15 g/mL for HELA cells. This study highlights the potential of Zinc Chromium vanadate nanoparticles as promising candidates for antibacterial and anticancer applications. Various advanced characterization techniques were used to analyze the properties of nanomaterials, which may help develop more effective and safer antibacterial and anticancer agents in the future.

7.
Saudi J Biol Sci ; 28(12): 7511-7516, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867056

RESUMO

BACKGROUND: Tumor necrosis factor interacting protein (TRAIP/TRIP) is an important cell-signaling molecule that prevents the TNF-induced-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation via direct interaction with TRAF 2 protein. TRAIP is a crucial downstream signaling molecule, implicated in several signaling pathways. Due to these multifunctional effects, TRAIP is more related to cellular mitosis, chromosome segregation, and DNA damage response. Tumor necrosis factor interacting protein is a downstream signaling molecule that contains a RING domain with E3 ubiquitin ligase activity at the N terminal side followed by coiled-coil and C terminal leucine zipper domain. Human TRAIP is constituted of 469 amino acids with 76% sequence similarity with the mouse TRAIP protein. Although, the main inhibitory function of TRAIP has been known for decades, however, in vitro interaction of TRAIPCC domain with RAP80 Zinc finger motif has not been reported yet. Besides, RAP80, the binding partner of TRAIPCC protein has been implicated in DNA damage response. RESULTS: Our in vitro study shows that the TRAIP CC (64-166) associates with the RAP80 zinc finger of corresponding amino acid 490-584. However, TRAIP CCLZ (66-260) and TRAIP RINGCC (1 = 157) failed to interact with the RAP80 zinc finger of corresponding amino acid 490-584. The current study reinforces TRAIP CC (64-166) and RAP80 zinc finger of corresponding amino acid 490-584 associates to form a complex. Moreover, SDS PAGE arbitrated the homogeneity of RAP80 Zinc finger and TRAIP CC of corresponding amino acid 490-584 and 64-166, respectively. CONCLUSION: In vitro, a specific interaction was observed between the TRAIP CC (64-166) and the RAP80 zinc finger of the corresponding amino acid 490-584 and a specific binding area of the RAP80 zinc finger motif were investigated. The TRAIPCC region is required for the complex to bind to the RAP80-Zn finger motif. This strategy may be necessary for the RAP80 zinc finger activity to the TRAIP CC protein.

8.
Saudi J Biol Sci ; 28(3): 1795-1800, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732064

RESUMO

The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H2O2). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H2O2-induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H2O2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC50 value of vanillic acid and H2O2 was found 250 µg/ml and 125 µg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H2O2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H2O2 treated group. The effect of H2O2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H2O2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.

9.
J Fungi (Basel) ; 7(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477480

RESUMO

Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles' fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39-0.78 µg/mL and 0.78-1.56 µg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections.

10.
Sci Total Environ ; 757: 143781, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33229074

RESUMO

Biofuel is the only novel solution to the increase in the greenhouse effect and bursting energy demand. The catalytic cracking of non-edible vegetable oils, namely castor and mustard was studied to yield gasoline range (C5-C9) hydrocarbons. Hß (Microporous; pore size <2 nm) and AlMCM-41 (Mesoporous; pore size 2 nm-50 nm) materials with different Si/Al ratios were used as catalysts for cracking purposes. Characterization of these catalysts was done by X-ray diffraction, Surface area analyzer, nitrogen sorption studies, TPD and inductively coupled plasma techniques. Used mustard oil was cracked over AlMCM-41 catalysts in a fixed bed catalytic cracking unit at optimized reaction condition (400 °C, 4.6 h-1) obtained over Hß. The liquid and gaseous products were analyzed using gas chromatograph (Shimadzu GC-9A). Among the mesoporous catalysts AlMCM-41 (27) was able to convert 75% of mustard oil into 48% of bioliquid and 30.4% selectivity towards BG. Pongamia, neem, castor, fresh coconut and used coconut oil was also cracked using AlMCM-41 (27) catalyst. The major products of cracking reactions were Castor Bioliquid (CBL) comprising of bio gasoline (BG), bio kerosene (BK) and bio diesel (BD) with less yield of gaseous products. AlMCM-41 converted 98% of castor oil into 85% of CBL and it was tested with ASTM 6751 standard procedures for its calorific value, viscosity and flash point. The sulphur emission from CBL run engine reached lower index. The results exhibited the commercial utility of the CBL in the near future.


Assuntos
Biocombustíveis , Óleo de Rícino , Catálise , Mostardeira , Porosidade
11.
Integr Cancer Ther ; 19: 1534735420920711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32463309

RESUMO

Background:Rhazya stricta has been used as a folkloric medicinal herb for treating various diseases such as diabetes, inflammatory disorders, and sore throat. Several studies have revealed the potential of this plant as an important source of phytochemicals with anticancer properties. Objective: The present study was designed to isolate a novel anticancer compound from Rhazya stricta and elucidate its mechanism of action using genomics approach. Methods:Rhazya stricta leaves extract was prepared, and several alkaloids were purified and characterized. These alkaloids were screened for their anticancer potential. One of the alkaloids, termed as isopicrinine, showed efficient cytotoxicity against MCF7 breast cancer cell line and was selected for further analysis. RNA-Seq transcription profiling was conducted to identify the affected genes and cellular pathways in MCF7 cells after treatment with isopicrinine alkaloid. Results: In vitro studies revealed that newly identified isopicrinine alkaloid possess efficient anticancer activity. Exposure of MCF7 cells with isopicrinine affected the expression of various genes involved in p53 signaling pathway. One of the crucial proapoptotic genes, significantly upregulated in MCF7 after exposure to alkaloid, was PUMA (p53 upregulated modulator of apoptosis), which is involved in p53-dependent and -independent apoptosis. Moreover, exposure of sublethal dose of isopicrinine alkaloid in breast cancer cell line led to the downregulation of survivin, which is involved in negative regulation of apoptosis. Besides, several genes involved in mitosis and cell proliferation were significantly downregulated. Conclusion: In this article, we report the determination of a new alkaloid isopicrinine from the aerial parts of Rhazya stricta with anticancer property. This compound has the potential to be developed as a drug for curing cancer.


Assuntos
Alcaloides , Apocynaceae , Perfilação da Expressão Gênica , Plantas Medicinais , Humanos , Extratos Vegetais
12.
Saudi J Biol Sci ; 26(7): 1338-1343, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762593

RESUMO

Obesity is a multifactorial metabolic disorder characterized by low grade chronic inflammation. Rare and novel mutations in genes which are vital in several key pathways have been reported to alter the energy expenditure which regulates body weight. The TP53 or p53 gene plays a prominent role in regulating various metabolic activities such as glycolysis, lipolysis, and glycogen synthesis. Recent genome-wide association studies reported that tumor suppressor gene p53 variants play a critical role in the predisposition of type 2 diabetes and obesity. Till date, no reports are available from the Arabian population; hence the present study was intended to assess the association between p53 variants with risk of obesity development in the Saudi population. We have selected three p53 polymorphisms, rs1642785 (C > G), and rs9894946 (A > G), and rs1042522 (Pro72Arg; C > G) and assessed their association with obesity risk in the Saudi population. Phenotypic and biochemical parameters were also evaluated to check their association with p53 genotypes and obesity. Genotyping was carried out on 136 obese and 122 normal samples. We observed that there is significantly increased prevalence p52 Pro72Arg (rs1042522) polymorphism in obese persons when compared to controls at GG genotype in overall comparison (OR: 2.169, 95% CI: 1.086-4.334, p = 0.02716). Male obese subjects showed three-fold higher risk at GG genotype (OR: 3.275, 95% CI: 1.230-8.716, p = 0.01560) and two-fold risk at G allele (OR: 1.827, 95% CI: 1.128-2.958, p = 0.01388) of p53 variant Pro72Arg respectively. This variant has also shown significant influence on cholesterol, LDL level, and random insulin levels in obese subjects (p ≤ 0.05). In conclusion, p53 Pro72Arg variant is highly prevalent among obese individuals and may act as a genetic modifier for obesity development among Saudis.

13.
PLoS One ; 14(4): e0214337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31013288

RESUMO

Obesity is connected to the activation of chronic inflammatory pathways in both adipocytes and macrophages located in adipose tissues. The nuclear factor (NF)-κB is a central molecule involved in inflammatory pathways linked to the pathology of different complex metabolic disorders. Investigating the gene expression data in the adipose tissue would potentially unravel disease relevant gene interactions. The present study is aimed at creating a signature molecular network and at prioritizing the potential biomarkers interacting with NF-κB family of proteins in obesity using system biology approaches. The dataset GSE88837 associated with obesity was downloaded from Gene Expression Omnibus (GEO) database. Statistical analysis represented the differential expression of a total of 2650 genes in adipose tissues (p = <0.05). Using concepts like correlation, semantic similarity, and theoretical graph parameters we narrowed down genes to a network of 23 genes strongly connected with NF-κB family with higher significance. Functional enrichment analysis revealed 21 of 23 target genes of NF-κB were found to have a critical role in the pathophysiology of obesity. Interestingly, GEM and PPP1R13L were predicted as novel genes which may act as potential target or biomarkers of obesity as they occur with other 21 target genes with known obesity relationship. Our study concludes that NF-κB and prioritized target genes regulate the inflammation in adipose tissues through several molecular signaling pathways like NF-κB, PI3K-Akt, glucocorticoid receptor regulatory network, angiogenesis and cytokine pathways. This integrated system biology approaches can be applied for elucidating functional protein interaction networks of NF-κB protein family in different complex diseases. Our integrative and network-based approach for finding therapeutic targets in genomic data could accelerate the identification of novel drug targets for obesity.


Assuntos
Gordura Intra-Abdominal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Obesidade/genética , Proteínas Repressoras/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/metabolismo , NF-kappa B/genética , Neovascularização Fisiológica/genética , Obesidade/tratamento farmacológico , Obesidade/patologia , Fosfatidilinositol 3-Quinases/genética , Mapas de Interação de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Glucocorticoides/genética
14.
PLoS One ; 12(5): e0177589, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28520766

RESUMO

Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.


Assuntos
Apocynaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Transcriptoma , Apocynaceae/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Folhas de Planta , Salinidade , Tetrapirróis/metabolismo
15.
Chem Cent J ; 11: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194226

RESUMO

Rhazya stricta is a unique medicinal plant source for many indole alkaloids, non-alkaloids, flavonoids, triterpenes and other unknown molecules with tremendous potential for therapeutic applications against many diseases. In the present article, we generated computational data on predictive properties and activity across two key therapeutic areas of cancer and obesity, and corresponding cheminformatics studies were carried out to examine druggable properties of these alkaloids. Computed physiochemical properties of the 78 indole alkaloids from R. stricta plant using industry-standard scientific molecular modeling software and their predictive anti-cancer activities from reliable web-source technologies indicate their plausible therapeutic applications. Their predictive ADME properties are further indicative of their drug-like-ness. We believe that the top-ranked molecules with anti-cancer activity are clearly amenable to chemical modifications for creating potent, safe and efficacious compounds with the feasibility of generating new chemical entities after pre-clinical and clinical studies.

16.
C R Biol ; 339(3-4): 105-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27052474

RESUMO

This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants.


Assuntos
Apoptose/genética , Arabidopsis/genética , Nicotiana/genética , Tolerância ao Sal/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Inativação Gênica , Proteínas de Membrana/genética , Ácido Oxálico/química , Cloreto de Sódio/química , Fatores de Tempo
17.
J Food Sci ; 80(11): H2578-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408984

RESUMO

Structured lipids (SLs) containing palmitic, docosahexaenoic (DHA), and gamma-linolenic (GLA) acids were produced using refined olive oil, tripalmitin, and ethyl esters of DHA single cell oil and GLA ethyl esters. Immobilized Lipozyme TL IM lipase was used as the biocatalyst. The SLs were characterized for fatty acid profile, triacylglycerol (TAG) molecular species, solid fat content, oxidative stability index, and melting and crystallization profiles and compared to physical blend of substrates, extracted fat from commercial infant formula (IFF), and milk fat. 49.28 mol% of palmitic acid was found at the sn-2 position of SL TAG and total DHA and GLA composition were 0.73 and 5.00 mol%, respectively. The total oleic acid content was 36.13 mol% which was very close to the 30.49% present in commercial IFF. Comparable solid fat content profiles were also found between SLs and IFF. The SLs produced have potential for use in infant formulas.


Assuntos
Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Fórmulas Infantis/química , Lipase/metabolismo , Lipídeos/biossíntese , Azeite de Oliva/metabolismo , Triglicerídeos/análise , Ácidos Docosa-Hexaenoicos/análise , Humanos , Lactente , Ácido Oleico/análise , Ácido Palmítico/análise , Triglicerídeos/metabolismo , Ácido gama-Linolênico/análise
18.
Nat Commun ; 6: 8041, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314500

RESUMO

YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Secas , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Estresse Oxidativo/genética , Oxirredutases/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Compostos de Sulfidrila/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/metabolismo , Mutação , Oxirredutases/metabolismo , Fenótipo
19.
C R Biol ; 338(10): 643-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26318047

RESUMO

Nucleotide sequences of the C. roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24 Pfam putative USPA proteins in C. roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C. roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C. roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences.


Assuntos
Catharanthus/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Sequência de Bases , Catharanthus/genética , Sequência Conservada , Bases de Dados Genéticas , Proteínas de Choque Térmico/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie
20.
Plasmid ; 72: 18-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24680933

RESUMO

Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.


Assuntos
Carotenoides/biossíntese , Farnesiltranstransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , Ergosterol/biossíntese , Erwinia/enzimologia , Erwinia/genética , Farnesiltranstransferase/biossíntese , Expressão Gênica , Genes Bacterianos , Geranil-Geranildifosfato Geranil-Geraniltransferase/biossíntese , Licopeno , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Oxirredutases/biossíntese , Plasmídeos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA