Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mov Disord ; 36(10): 2346-2357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34076298

RESUMO

BACKGROUND: Cytoplasmic inclusions of α-synuclein (α-syn) in brainstem neurons are characteristic of idiopathic Parkinson's disease (PD). PD also entails α-syn buildup in sympathetic nerves. Among genetic forms of PD, the relative extents of sympathetic intraneuronal accumulation of α-syn have not been reported. OBJECTIVE: This cross-sectional observational study compared magnitudes of intraneuronal deposition of α-syn in common and rare genetic forms of PD. METHODS: α-Syn deposition was quantified by the α-syn-tyrosine hydroxylase colocalization index in C2 cervical skin biopsies from 65 subjects. These included 30 subjects with pathogenic mutations in SNCA (n = 3), PRKN [biallelic (n = 7) and monoallelic (n = 3)], LRRK2 (n = 7), GBA (n = 7), or PARK7/DJ1 [biallelic (n = 1) and monoallelic (n = 2)]. Twenty-five of the mutation carriers had PD and five did not. Data were also analyzed from 19 patients with idiopathic PD and 16 control participants. RESULTS: α-Syn deposition varied as a function of genotype (F = 16.7, P < 0.0001). It was above the control range in 100% of subjects with SNCA mutations, 100% with LRRK2 mutations, 95% with idiopathic PD, 83% with GBA mutations, and 0% with biallelic PRKN mutations. α-Syn deposition in the biallelic PRKN group was significantly higher than in the control group. In addition, patients with biallelic PRKN mutations had higher α-syn deposition than their unaffected siblings. CONCLUSIONS: Individuals with SNCA, DJ-1, LRRK2, or GBA mutations have substantial intraneuronal α-syn deposition in sympathetic noradrenergic nerves in skin biopsies, whereas those with biallelic PRKN mutations do not. Biallelic PRKN patients may have mildly increased α-syn deposition compared with control subjects. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Estudos Transversais , Humanos , Mutação/genética , Fibras Nervosas , Doença de Parkinson/genética , alfa-Sinucleína/genética
2.
Nat Genet ; 53(3): 294-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589841

RESUMO

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.


Assuntos
Estudo de Associação Genômica Ampla , Doença por Corpos de Lewy/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Glucosilceramidase/genética , Humanos , Proteínas Nucleares/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética , alfa-Sinucleína/genética
3.
ACS Chem Neurosci ; 12(5): 857-871, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570383

RESUMO

There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.


Assuntos
Apolipoproteínas E , Glioblastoma , Receptores X de Retinoides/agonistas , Tirosina 3-Mono-Oxigenase , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
4.
Nutrients ; 10(2)2018 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-29401702

RESUMO

Treatment with 1,25-dihydroxyvitamin D3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.


Assuntos
Curcumina/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Queratinócitos/efeitos dos fármacos , Psoríase/genética , Receptores de Calcitriol/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Queratinócitos/metabolismo , Ligantes , Psoríase/prevenção & controle , Ratos , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Pele/metabolismo
5.
J Neurogastroenterol Motil ; 24(1): 96-106, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29291611

RESUMO

BACKGROUND/AIMS: Irritable bowel syndrome (IBS) is a multifaceted disorder that afflicts millions of individuals worldwide. IBS is currently diagnosed based on the presence/duration of symptoms and systematic exclusion of other conditions. A more direct manner to identify IBS is needed to reduce healthcare costs and the time required for accurate diagnosis. The overarching objective of this work is to identify gene expression-based biological signatures and biomarkers of IBS. METHODS: Gene transcripts from 24 tissue biopsy samples were hybridized to microarrays for gene expression profiling. A combination of multiple statistical analyses was utilized to narrow the raw microarray data to the top 200 differentially expressed genes between IBS versus control subjects. In addition, quantitative polymerase chain reaction was employed for validation of the DNA microarray data. Gene ontology/pathway enrichment analysis was performed to investigate gene expression patterns in biochemical pathways. Finally, since vitamin D has been shown to modulate serotonin production in some models, the relationship between serum vitamin D and IBS was investigated via 25-hydroxyvitamin D (25[OH]D) chemiluminescence immunoassay. RESULTS: A total of 858 genetic features were identified with differential expression levels between IBS and asymptomatic populations. Gene ontology enrichment analysis revealed the serotonergic pathway as most prevalent among the differentially expressed genes. Further analysis via real-time polymerase chain reaction suggested that IBS patient-derived RNA exhibited lower levels of tryptophan hydroxylase-1 expression, the enzyme that catalyzes the rate-limiting step in serotonin biosynthesis. Finally, mean values for 25(OH)D were lower in IBS patients relative to non-IBS controls. CONCLUSIONS: Values for serum 25(OH)D concentrations exhibited a trend towards lower vitamin D levels within the IBS cohort. In addition, the expression of select IBS genetic biomarkers, including tryptophan hydroxylase 1, was modulated by vitamin D. Strikingly, the direction of gene regulation elicited by vitamin D in colonic cells is "opposite" to the gene expression profile observed in IBS patients, suggesting that vitamin D may help "reverse" the pathological direction of biomarker gene expression in IBS. Thus, our results intimate that IBS pathogenesis and pathophysiology may involve dysregulated serotonin production and/or vitamin D insufficiency.

6.
J Steroid Biochem Mol Biol ; 172: 117-129, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28636886

RESUMO

The hormonal metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), binds to the vitamin D receptor (VDR) and promotes heterodimerization of VDR with a retinoid-X-receptor (RXR) to genomically regulate diverse cellular processes. Herein, it is revealed for the first time that VDR is post-translationally acetylated, and that VDR immunoprecipitated from human embryonic kidney (HEK293) cells displays a dramatic decrease in acetylated receptor in the presence of 1,25D-ligand, sirtuin-1 (SIRT1) deacetylase, or the resveratrol activator of SIRT1. To elucidate the functional significance of VDR deacetylation, vitamin-d-responsive-element (VDRE)-based transcriptional assays were performed to determine if deacetylase overexpression affects VDR/VDRE-driven transcription. In HEK293 kidney and TE85 bone cells, co-transfection of low amounts (1-5ng) of a SIRT1-expression vector elicits a reproducible and statistically significant enhancement (1.3- to 2.6-fold) in transcription mediated by VDREs from the CYP3A4 and cyp24a1 genes, where the magnitude of response to 1,25D-ligand is 6- to 30-fold. Inhibition of SIRT1 via EX-527, or utilization of a SIRT1 loss-of-function mutant (H363Y), resulted in abrogation of SIRT1-mediated VDR potentiation. Studies with a novel, non-acetylatable VDR mutant (K413R) showed that the mutant VDR possesses enhanced responsiveness to 1,25D, in conjunction with reduced, but still significant, sensitivity to exogenous SIRT1, indicating that acetylation of lysine 413 is relevant, but that other acetylated residues in VDR contribute to modulation of its activity. We conclude that the acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This regulatory loop is reversed by SIRT1-catalyzed deacetylation of VDR to amplify VDR signaling and 1,25D actions.


Assuntos
Calcitriol/farmacologia , Citocromo P-450 CYP3A/metabolismo , Osteoblastos/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Animais , Calcitriol/metabolismo , Carbazóis/farmacologia , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutação , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Ratos , Receptores de Calcitriol/genética , Receptores X de Retinoides/genética , Transdução de Sinais , Sirtuína 1/genética , Transcrição Gênica , Elemento de Resposta à Vitamina D
7.
Vitam Horm ; 100: 165-230, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26827953

RESUMO

1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.


Assuntos
Glucuronidase/metabolismo , Vitamina D/análogos & derivados , Animais , Fator de Crescimento de Fibroblastos 23 , Regulação da Expressão Gênica/fisiologia , Glucuronidase/genética , Humanos , Proteínas Klotho , Transdução de Sinais/fisiologia , Vitamina D/química , Vitamina D/farmacologia
8.
FASEB J ; 29(9): 4023-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071405

RESUMO

To investigate vitamin D-related control of brain-expressed genes, candidate vitamin D responsive elements (VDREs) at -7/-10 kb in human tryptophan hydroxylase (TPH)2 were probed. Both VDREs bound the vitamin D receptor (VDR)-retinoid X receptor (RXR) complex and drove reporter gene transcription in response to 1,25-dihydroxyvitamin D3 (1,25D). Brain TPH2 mRNA, encoding the rate-limiting enzyme in serotonin synthesis, was induced 2.2-fold by 10 nM 1,25D in human U87 glioblastoma cells and 47.8-fold in rat serotonergic RN46A-B14 cells. 1,25D regulation of leptin (Lep), encoding a serotoninlike satiety factor, was also examined. In mouse adipocytes, 1,25D repressed leptin mRNA levels by at least 84%, whereas 1,25D induced leptin mRNA 15.1-fold in human glioblastoma cells. Chromatin immunoprecipitation sequencing analysis of the mouse Lep gene in response to 1,25D revealed a cluster of regulatory sites (cis-regulatory module; CRM) at -28 kb that 1,25D-dependently docked VDR, RXR, C/EBPß, and RUNX2. This CRM harbored 3 VDREs and single C/EBPß and RUNX2 sites. Therefore, the expression of human TPH2 and mouse Lep are governed by 1,25D, potentially via respective VDREs located at -7/-10 kb and -28 kb. These results imply that vitamin D affects brain serotonin concentrations, which may be relevant to psychiatric disorders, such as autism, and may control leptin levels and affect eating behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Calcitriol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/biossíntese , Triptofano Hidroxilase/biossíntese , Células 3T3-L1 , Animais , Transtorno Autístico/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , RNA Mensageiro/biossíntese , Elementos de Resposta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA