Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1152: 243-252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456187

RESUMO

Sequencing technologies have allowed us to characterize highly heterogeneous molecular landscape of breast cancer with unprecedented details. Tremendous breakthroughs have been made in unraveling contributory role of signaling pathways in breast cancer development and progression. It is becoming progressively more understandable that deregulation of spatio-temporally controlled pathways underlie development of resistance against different drugs. TRAIL mediated signaling has attracted considerable appreciation because of its characteristically unique ability to target cancer cells while leaving normal cells intact. Discovery of TRAIL was considered as a paradigm shift in molecular oncology because of its conspicuous ability to selectively target cancer cells. There was an exponential growth in the number of high-quality reports which highlighted cancer targeting ability of TRAIL and scientists worked on the development of TRAIL-based therapeutics and death receptor targeting agonistic antibodies to treat cancer. However, later studies challenged simplistic view related to tumor targeting ability of TRAIL. Detailed mechanistic insights revealed that overexpression of anti-apoptotic proteins, inactivation of pro-apoptotic proteins and downregulation of death receptors were instrumental in impairing apoptosis in cancer cells. Therefore researchers started to give attention to identification of methodologies and strategies to overcome the stumbling blocks associated with TRAIL-based therapeutics. Subsequent studies gave us a clear picture of signaling cascade of TRAIL and how deregulation of different proteins abrogated apoptosis. In this chapter we have attempted to provide an overview of the TRAIL induced signaling, list of proteins frequently deregulated and modern approaches to strategically restore apoptosis in TRAIL-resistant breast cancers.


Assuntos
Apoptose , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos
2.
J Cell Biochem ; 120(2): 1060-1067, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30278099

RESUMO

Wealth of information gleaned from decades of high-impact research work; scientists have disentangled the complicated web of versatile regulators that underlie cancer development and progression. Use of structural biology approaches and functional genomics have helped us to gain new insights into complex nature of cancer, and it is now clear that genetic/epigenetic mutations, overexpression of oncogenes, inactivation of tumor suppressors, loss of apoptosis, and versatility of protein binding partners have contributory roles in carcinogenesis and metastatic spread. It is becoming progressively more understandable that reprogramming of gene expression during and nontranscriptional changes during cancer development and progression are initiated and controlled by deregulated signal transduction cascades, all of which collectively create an incalculable complexity. Data obtained through preclinical and clinical trials revealed that alterations in the targeted oncogenes and other downstream, and parallel pathways played a central role in the development of resistance against different therapeutics. Phytochemicals have regained limelight, and different natural products are currently being tested for efficacy in preclinical studies. Apigenin, a plant-derived flavonoid has considerable pharmacological value and is reportedly involved in the regulation of different signaling cascades. In this review, we have attempted to summarize rapidly evolving understanding of molecular biologists and pharmacologists about the potential of apigenin in the regulation of deregulated signaling pathways in different cancers. We have emphasized on the regulation of WNT/ß-catenin and janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. We also comprehensively discuss how apigenin restored apoptosis in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant cancers. The review also gives a snapshot of microRNAs (miRNAs) that regulate wide-ranging biological processes, and it is now clear that each miRNA can control hundreds of gene targets. Apigenin was noted to upregulate miR-520b and miR-101 in different cancers to inhibit tumor growth. Moreover, apigenin-induced apoptotic rate was significantly higher when used in combination with miR-423-5p inhibitors or miR-138 mimics. Better comprehension of linear and integrated signaling pathways will be helpful in effective therapeutic targeting of deregulated signaling pathways to inhibit/prevent cancer.

3.
Food Chem Toxicol ; 119: 98-105, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29753870

RESUMO

Research over decades has progressively explored pharmacological actions of bitter gourd (Momordica charantia). Biologically and pharmacologically active molecules isolated from M. charantia have shown significant anti-cancer activity in cancer cell lines and xenografted mice. In this review spotlight was set on the bioactive compounds isolated from M. charantia that effectively inhibited cancer development and progression via regulation of protein network in cancer cells. We summarize most recent high-quality research work in cancer cell lines and xenografted mice related to tumor suppressive role-play of M. charantia and its bioactive compounds. Although M. charantia mediated health promoting, anti-diabetic, hepatoprotective, anti-inflammatory effects have been extensively investigated, there is insufficient information related to regulation of signaling networks by bioactive molecules obtained from M. charantia in different cancers. M. charantia has been shown to modulate AKT/mTOR/p70S6K signaling, p38MAPK-MAPKAPK-2/HSP-27 pathway, cell cycle regulatory proteins and apoptosis-associated proteins in different cancers. However, still there are visible knowledge gaps related to the drug targets in different cancers because we have not yet developed comprehensive understanding of the M. charantia mediated regulation of signal transduction pathways. To explore these questions, experimental platforms are needed that can prove to be helpful in getting a step closer to personalized medicine.


Assuntos
Antineoplásicos Fitogênicos/química , Momordica charantia/química , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA