Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 30(10): 1354-1362.e6, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029764

RESUMO

The SARS-CoV-2 3CL protease (3CLpro) is an attractive therapeutic target, as it is essential to the virus and highly conserved among coronaviruses. However, our current understanding of its tolerance to mutations is limited. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the 3CLpro and validate a subset of our results within authentic viruses. We reveal that the 3CLpro is highly malleable and is capable of tolerating mutations throughout the protein. Yet, we also identify specific residues that appear immutable, suggesting that these may be targets for future 3CLpro inhibitors. Finally, we utilize our screening as a basis to identify E166V as a resistance-conferring mutation against the clinically used 3CLpro inhibitor, nirmatrelvir. Collectively, the functional map presented herein may serve as a guide to better understand the biological properties of the 3CLpro and for drug development against coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeo Hidrolases/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/genética
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074917

RESUMO

Early events of the retroviral life cycle are the targets of many host restriction factors that have evolved to prevent establishment of infection. Incoming retroviral DNAs are transcriptionally silenced before integration in most cell types, and efficient viral gene expression occurs only after formation of the provirus. The molecular machinery for silencing unintegrated retroviral DNAs of HIV-1 remains poorly characterized. Here, we identified the histone chaperones CHAF1A and CHAF1B as essential factors for silencing of unintegrated HIV-1 DNAs. Using RNAi-mediated knockdown (KD) of multiple histone chaperones, we found that KD of CHAF1A or CHAF1B resulted in a pronounced increase in expression of incoming viral DNAs. The function of these two proteins in silencing was independent of their interaction partner RBBP4. Viral DNA levels accumulated to significantly higher levels in CHAF1A KD cells over controls, suggesting enhanced stabilization of actively transcribed DNAs. Chromatin immunoprecipitation assays revealed no major changes in histone loading onto viral DNAs in the absence of CHAF1A, but levels of the H3K9 trimethylation silencing mark were reduced. KD of the H3K9me3-binding protein HP1γ accelerated the expression of unintegrated HIV-1 DNAs. While CHAF1A was critical for silencing HIV-1 DNAs, it showed no role in silencing of unintegrated retroviral DNAs of mouse leukemia virus. Our study identifies CHAF1A and CHAF1B as factors involved specifically in silencing of HIV-1 DNAs early in infection. The results suggest that these factors act by noncanonical pathways, distinct from their histone loading activities, to mediate silencing of newly synthesized HIV-1 DNAs.


Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , DNA Viral , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Provírus/genética , Integração Viral , Regulação Viral da Expressão Gênica , Inativação Gênica , HIV-1/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Transcrição Gênica , Proteína 28 com Motivo Tripartido/metabolismo
3.
mBio ; 10(6)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796536

RESUMO

Conjugation of small ubiquitin-like modifiers (SUMOs) to substrate proteins is a posttranslational protein modification that affects a diverse range of physiological processes. Global inhibition of SUMO conjugation in mice results in embryonic lethality, reflecting the importance of the SUMO pathways for embryonic development. Here, we demonstrated that SUMO1 overexpression was not well tolerated in murine embryonic carcinoma and embryonic stem (ES) cells and that only a few clones were recovered after transduction with vectors delivering SUMO1 expression constructs. Differentiated NIH/3T3 cells overexpress SUMO1 without deleterious effects and maintain high levels of both conjugated and free forms of SUMO1. The few embryonic cells surviving after forced overexpression retained all their SUMO1 in the form of a few high-molecular-weight conjugates and maintained undetectable levels of free SUMO1. The absence of free SUMO in embryonic cells was seen specifically upon overexpression of SUMO1, but not SUMO2. Moreover, blocking SUMO1 conjugation to endogenous substrates by C-terminal mutations of SUMO1 or by overexpression of a SUMO1 substrate "sponge" or by overexpression of the deSUMOylating enzyme SUMO-specific peptidase 1 (SENP1) dramatically restored free SUMO1 overexpression. The data suggest that overexpression of SUMO1 protein leading to an excess accumulation of critical SUMO1-conjugated substrates is not tolerated in embryonic cells. Surviving embryonic cells exhibit SUMO1 conjugation to allowed substrates but a complete absence of free SUMO1.IMPORTANCE Embryonic stem (ES) cells exhibit unusual transcriptional, proteomic, and signal response profiles, reflecting their unusual needs for rapid differentiation and replication. The work reported here demonstrated that mouse embryonic cell lines did not tolerate the overexpression of SUMO1, the small ubiquitin-like modifier protein that is covalently attached to many substrates to alter their intracellular localization and functionality. Forced SUMO1 overexpression is toxic to ES cells, and surviving cell populations adapt by dramatically reducing the levels of free SUMO1. Such a response is not seen in differentiated cells or with SUMO2 or with nonconjugatable SUMO1 mutants or in the presence of a SUMO1 "sponge" substrate that accepts the modification. The findings suggest that excess SUMO1 modification of specific substrates is not tolerated by embryonic cells and highlight a distinctive need for these cells to control the levels of SUMO1 available for conjugation.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína SUMO-1/metabolismo , Animais , Linhagem Celular , Cisteína Endopeptidases/genética , Endopeptidases/genética , Células HEK293 , Humanos , Camundongos , Mutação , Células NIH 3T3 , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos , Sumoilação/genética , Ubiquitinas/metabolismo
4.
Virology ; 516: 165-175, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407374

RESUMO

Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally silenced in embryonic cells by a large repressor complex tethered to the provirus by two sequence-specific DNA binding proteins, ZFP809 and YY1. A central component of the complex is Trim28, a scaffold protein that regulates many target genes involved in cell cycle progression, DNA damage responses, and viral gene expression. The silencing activity of Trim28, and its interactions with corepressors are often regulated by post-translational modifications such as sumoylation and phosphorylation. We defined the interaction domains of Trim28 and YY1, and investigated the role of sumoylation and phosphorylation of Trim28 in mediating M-MLV silencing. The RBCC domain of Trim28 was sufficient for interaction with YY1, and acidic region 1 and zinc fingers of YY1 were necessary and sufficient for its interaction with Trim28. Additionally, we found that residue K779 was critical for Trim28-mediated silencing of M-MLV in embryonic cells.


Assuntos
Vírus da Leucemia Murina de Moloney/fisiologia , Provírus/genética , Infecções por Retroviridae/veterinária , Doenças dos Roedores/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Fator de Transcrição YY1/metabolismo , Motivos de Aminoácidos , Animais , Inativação Gênica , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Ligação Proteica , Domínios Proteicos , Provírus/metabolismo , Infecções por Retroviridae/genética , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia , Proteína 28 com Motivo Tripartido/química , Proteína 28 com Motivo Tripartido/genética , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética
5.
Nat Commun ; 8(1): 1522, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142315

RESUMO

While beta-amyloid (Aß), a classic hallmark of Alzheimer's disease (AD) and dementia, has long been known to be elevated in the human immunodeficiency virus type 1 (HIV-1)-infected brain, why and how Aß is produced, along with its contribution to HIV-associated neurocognitive disorder (HAND) remains ill-defined. Here, we reveal that the membrane-associated amyloid precursor protein (APP) is highly expressed in macrophages and microglia, and acts as an innate restriction against HIV-1. APP binds the HIV-1 Gag polyprotein, retains it in lipid rafts and blocks HIV-1 virion production and spread. To escape this restriction, Gag promotes secretase-dependent cleavage of APP, resulting in the overproduction of toxic Aß isoforms. This Gag-mediated Aß production results in increased degeneration of primary cortical neurons, and can be prevented by γ-secretase inhibitor treatment. Interfering with HIV-1's evasion of APP-mediated restriction also suppresses HIV-1 spread, offering a potential strategy to both treat infection and prevent HAND.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , HIV-1/metabolismo , Microglia/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/virologia , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , HIV-1/genética , HIV-1/fisiologia , Células HeLa , Humanos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Camundongos , Microglia/virologia , Neurônios/metabolismo , Neurônios/virologia , Ligação Proteica , Células THP-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
Oncotarget ; 7(32): 52115-52134, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27366948

RESUMO

Interferons (IFNs) induce anti-viral programs, regulate immune responses, and exert anti-proliferative effects. To escape anti-tumorigenic effects of IFNs, malignant cells attenuate JAK/STAT signaling and expression of IFN stimulated genes (ISGs). Such attenuation may enhance the susceptibility of tumor cells to oncolytic virotherapy. Here we studied genetic and epigenetic mechanisms of interference with JAK/STAT signaling and their contribution to susceptibility of prostate cancer cells to viral infection. Bioinformatics analysis of gene-expression in cohorts of prostate cancer patients revealed genetic and epigenetic interference with the IFN program. To correlate lack of IFN signaling and susceptibility to viral infection and oncolysis; we employed LNCaP prostate cancer cells as cellular model, and the human metapneumovirus and the epizootic hemorrhagic disease virus as infectious agents. In LNCaP cells, JAK1 is silenced by bi-allelic inactivating mutations and epigenetic silencing, which also silences ISGs. Chemical inhibition of epigenetic silencing partially restored IFN-sensitivity, induced low levels of expression of selected ISGs and attenuated, but failed to block, viral infection and oncolysis. Since viral infection was not blocked by epigenetic modifiers, and these compounds may independently-induce anti-tumor effects, we propose that epigenetic modifiers and virotherapy are compatible in treatment of prostate tumors defective in JAK1 expression and IFN signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Interferons/metabolismo , Terapia Viral Oncolítica , Neoplasias da Próstata/genética , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Janus Quinase 1/metabolismo , Masculino
7.
J Virol ; 82(19): 9770-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667521

RESUMO

Moloney murine leukemia virus (MMuLV) Gag protein contains three identified late (L) domains, PPPY, YPAL, and PSAP, which are thought to interact with the endosomal sorting machinery to assist budding. We created single and combined L-domain mutants in all permutations and tested the resulting clones for budding and replication. Budding and replication of all viruses with mutated PPPY were greatly reduced; however, the basal replication level was retained, demonstrated by the slow spread of the viruses in culture. Mutations in PSAP or YPAL did not affect budding or spreading, demonstrating that these two motifs are dispensable for efficient MMuLV replication. Furthermore, the basal budding level was maintained following inhibition of endosomal sorting machinery, emphasizing that the basal budding of MMuLV is independent of this machinery.


Assuntos
Produtos do Gene gag/metabolismo , Genes gag , Vírus da Leucemia Murina de Moloney/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Replicação do DNA , Genes Virais , Humanos , Cinética , Camundongos , Modelos Biológicos , Mutação , Estrutura Terciária de Proteína , Montagem de Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA