Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Vaccine Immunol ; 23(4): 326-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865594

RESUMO

Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1ß, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7,r(2)= 0.86,P< 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.).


Assuntos
Vacinas contra Antraz/imunologia , Anticorpos Antibacterianos/sangue , Esquemas de Imunização , Imunização Secundária/métodos , Leucócitos Mononucleares/imunologia , Vacinas contra Antraz/administração & dosagem , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Ensaios Clínicos como Assunto , Estudos de Coortes , Citocinas/metabolismo , Humanos , Imunoglobulina G/sangue , Injeções Intramusculares , Injeções Subcutâneas , Testes de Neutralização , Placebos/administração & dosagem
2.
Viruses ; 7(12): 6739-54, 2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26703716

RESUMO

Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein's poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.


Assuntos
Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Poli U/análise , Proteínas do Envelope Viral/química , Fatores de Virulência/química , Animais , Modelos Animais de Doenças , Injeções Intramusculares , Macaca fascicularis , Análise de Sobrevida , Proteínas do Envelope Viral/metabolismo , Fatores de Virulência/metabolismo
3.
Arch Virol ; 158(6): 1305-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23397329

RESUMO

Infection with pathogenic influenza viruses is associated with intense inflammatory disease. Here, we investigated the innate immune response in mice infected with H5N1 A/Vietnam/1203/04 and with reassortant human H1N1 A/Texas/36/91 viruses containing the virulence genes hemagglutinin (HA), neuraminidase (NA) and NS1 of the 1918 pandemic virus. Inclusion of the 1918 HA and NA glycoproteins rendered a seasonal H1N1 virus capable of inducing an exacerbated host innate immune response similar to that observed for highly pathogenic A/Vietnam/1203/04 virus. Infection with 1918 HA/NA:Tx/91 and A/Vietnam/1203/04 were associated with severe lung pathology, increased cytokine and chemokine production, and significant immune cell changes, including the presence of CD11b(+)Gr-1(+) cells in the blood, lung and bone marrow. Significant differential gene expression in the lung included pathways for cell death, apoptosis, production and response to reactive oxygen radicals, as well as arginine and proline metabolism and chemokines associated with monocyte and neutrophil/granulocyte accumulation and/or activation. Arginase was produced in the lung of animals infected with A/Vietnam/1204. These results demonstrate that the innate immune cell response results in the accumulation of CD11b(+)Gr-1(+) cells and products that have previously been shown to contribute to T cell suppression.


Assuntos
Medula Óssea/imunologia , Antígeno CD11b/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T/imunologia , Animais , Quimiocinas/imunologia , Feminino , Perfilação da Expressão Gênica , Granulócitos/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Leucócitos/imunologia , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Virulência/imunologia
4.
J Biochem Mol Toxicol ; 23(3): 172-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19526566

RESUMO

Epithelial cell migration during wound healing is regulated in part by enzymatic processing of laminin-332 (formerly LN-5), a heterodimer formed from alpha, beta, and gamma polypeptide chains. Under static conditions, laminin-332 is secreted into the extracellular matrix as a proform and has two chains processed to smaller forms, allowing it to anchor epithelial cells to the basement membrane of the dermis. During incisional wounding, laminin gamma2 chains in particular are processed to smaller sizes and function to promote epithelial sheet migration over the wound bed. The present study examines whether this same function occurs following chemical injury. The mouse ear vesicant model (MEVM) was used to follow the pathology in the ear and test whether processed laminin-332 enhances epithelial cell migration. Skin biopsies of sulfur mustard (SM) exposed ears for several time points were analyzed by histology, immunohistochemistry, real-time PCR, and Western blot analysis. SM exposure greatly increased mRNA levels for laminin-gamma2 in comparison to the other two chains. Protein production of laminin-gamma2 was upregulated, and there was an increase in the processed forms. Protein production was in excess of the amount required to form heterotrimeric laminin-332 and was associated with the migrating epithelial sheet, suggesting a potential role in wound healing for monomeric laminin-gamma2.


Assuntos
Moléculas de Adesão Celular/biossíntese , Movimento Celular , Células Epiteliais/metabolismo , Laminina/biossíntese , Regulação para Cima , Cicatrização , Ferimentos e Lesões/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Orelha/patologia , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Laminina/metabolismo , Camundongos , RNA Mensageiro/biossíntese , Ferimentos e Lesões/patologia , Calinina
5.
J Biochem Mol Toxicol ; 18(6): 289-99, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15674843

RESUMO

The chemical warfare agent sulfur mustard [bis-(2-chloroethyl)-sulfide; SM] produces a delayed inflammatory response followed by blister formation in skin of exposed individuals. Studies are underway evaluating the efficacy of pharmacological compounds to protect against SM skin injury. Microarray analysis provides the opportunity to identify multiple transcriptional biomarkers associated with SM exposure. This study examined SM-induced changes in gene expression in skin from mice cutaneously exposed to SM using cDNA microarrays. Ear skin from five mice, paired as SM-exposed right ear and dichloromethane vehicle-exposed left ear at six dose levels (0.005, 0.01, 0.02, 0.04, 0.08, and 0.16 mg; 6 mM to 195 mM range), was harvested at 24 h post-exposure. SM-induced gene expression was analyzed using cDNA microarrays that included 1,176 genes. Genes were selected on the basis of all mice (N=5) in the same dose group demonstrating a > or =2-fold increase or decrease in gene expression for the SM-exposed tissue compared to the dichloromethane vehicle control ear tissue at all six SM doses. When skin exposed to all six concentrations of SM was compared to controls, a total of 19 genes within apoptosis, transcription factors, cell cycle, inflammation, and oncogenes and tumor suppressors categories were found to be upregulated; no genes were observed to be downregulated. Differences in the number and category of genes that were up- or down-regulated in skin exposed to low (0.005-0.01 mg) and high (0.08-0.16 mg) doses of SM were also observed. The results of this study provide a further understanding of the molecular responses to cutaneous SM exposure, and enable the identification of potential diagnostic markers and therapeutic targets for treating SM injury.


Assuntos
Perfilação da Expressão Gênica , Gás de Mostarda/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Pele/efeitos dos fármacos , Animais , Masculino , Camundongos , Pele/metabolismo
6.
J Biochem Mol Toxicol ; 16(6): 263-72, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12481301

RESUMO

Cutaneous exposure to sulfur mustard [bis(2-chloroethyl) sulfide; SM] produces a delayed inflammatory skin response and severe tissue injury. Pig skin has organ similarities to human skin that is characterized by the content and types of epidermal lipids, the density of hair follicles and presence of sweat glands, which together afford penetration of topically applied compounds, complex inflammatory responses, and subsequent wound healing. The goal of this study was to identify in vivo proinflammatory biomarkers of the SM porcine skin injury within 72 h after SM challenge, using the weanling pig model. Changes in gene expression of inflammatory mediators were examined at 3, 6, 24, 48, and 72 h, using subtraction library analyses and by quantitation of selected transcripts by reverse transcription-polymerase chain reaction (RT-PCR). Sequence analysis of subtraction libraries identified up-regulation of IL-8 at 24, 48, and 72 h. No other specific proinflammatory gene transcripts were isolated from the libraries. Specific transcript RT-PCR analysis showed increased production of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interleukin-8 (IL-8), and matrix metalloproteinase-9 (MMP-9, gelatinase B) mRNA levels in response to SM exposure. Tumor necrosis factor-alpha (TNF-alpha) expression was only slightly increased and no change in the levels of expression was observed for monocyte chemoattractant protein-1 and MMP-2. This study identifies the main proinflammatory mediators involved in SM-induced skin injury in a weanling pig model. The results suggest transcriptional activity in the inflammatory response proteins IL-8, IL-6, IL-1beta, and MMP-9 and modest changes in TNF-alpha that together produce inflammation and contribute to the pathogenesis of SM dermatotoxicity. Therefore, drugs preventing SM-induced inflammation should be prime candidates for medical intervention to lessen collateral inflammation associated with tissue destruction.


Assuntos
Quimiocinas/metabolismo , Dermatite Irritante/metabolismo , Interleucinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Animais , Sequência de Bases , Biomarcadores/análise , Quimiocinas/biossíntese , Quimiocinas/genética , Dermatite Irritante/etiologia , Dermatite Irritante/genética , Fármacos Dermatológicos/toxicidade , Interleucinas/biossíntese , Interleucinas/genética , Metaloproteinases da Matriz/biossíntese , Metaloproteinases da Matriz/genética , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Pele/imunologia , Suínos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA