Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 369: 363-375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554770

RESUMO

The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Rosa Bengala , Animais , Rosa Bengala/administração & dosagem , Rosa Bengala/farmacocinética , Injeções Intradérmicas , Masculino , Ratos Sprague-Dawley , Linfonodos/metabolismo , Ratos , Microinjeções , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética
2.
Eur J Pharm Biopharm ; 159: 77-87, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359754

RESUMO

Chlorhexidine digluconate (CHG) is a cationic bisbiguanide used in the UK as the first-line skin antiseptic prior to surgery in the UK due to its favourable efficacy and safety profile, high affinity for skin binding and minimal reports of resistance. Despite this, bacteria remain within deeper skin layers, furrows and appendages that are considered inaccessible to CHG, due to its poor dermal penetration. In this study a third generation, polyamidoamine dendrimer (G3 PAMAM-NH2) was utilised to improve dermal penetration of CHG. A topical gel formulation was optimised to maximise CHG delivery (containing 0.5% gelling agent and 4% drug), followed by drug and dendrimer co-formulation into a commercially viable gel. The gel containing 4% CHG and 1 mM PAMAM dendrimer significantly increased the depth permeation of CHG compared to the commercial benchmark (Hibiscrub®, containing 4% w/v CHG) (p < 0.05). The optimised formulation was further characterised using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), which indicated that the depth of dermal penetration achieved was sufficient to reach the skin strata that typically harbours pathogenic bacteria, which is currently inaccessible by commercial CHG formulations. This study therefore indicates that a G3 PAMAM-NH2 dendrimer gel may be viable as a permeation enhancer of CHG, for improved skin antisepsis in those at risk of a skin or soft tissue infection as a result of surgical intervention.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Clorexidina/análogos & derivados , Dendrímeros/farmacologia , Portadores de Fármacos/farmacologia , Pele/metabolismo , Animais , Anti-Infecciosos Locais/farmacocinética , Clorexidina/administração & dosagem , Clorexidina/farmacocinética , Dendrímeros/química , Portadores de Fármacos/química , Géis , Modelos Animais , Permeabilidade/efeitos dos fármacos , Pele/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Espectrometria de Massa de Íon Secundário , Suínos , Distribuição Tecidual , Perda Insensível de Água/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA