Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 36: 102424, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174417

RESUMO

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidase , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/farmacologia , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia
2.
FEBS J ; 288(16): 4939-4954, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33650155

RESUMO

Human d-aspartate oxidase (hDASPO) is a FAD-dependent enzyme responsible for the degradation of d-aspartate (d-Asp). In the mammalian central nervous system, d-Asp behaves as a classical neurotransmitter, it is thought to be involved in neural development, brain morphology and behavior, and appears to be involved in several pathological states, such as schizophrenia and Alzheimer's disease. Apparently, the human DDO gene produces alternative transcripts encoding for three putative hDASPO isoforms, constituted by 341 (the 'canonical' form), 369, and 282 amino acids. Despite the increasing interest in hDASPO and its physiological role, little is known about these different isoforms. Here, the additional N-terminal peptide present in the hDASPO_369 isoform only has been identified in hippocampus of Alzheimer's disease female patients, while peptides corresponding to the remaining part of the protein were present in samples from male and female healthy controls and Alzheimer's disease patients. The hDASPO_369 isoform was largely expressed in E. coli as insoluble protein, hampering with its biochemical characterization. Furthermore, we generated U87 human glioblastoma cell clones stably expressing hDASPO_341 and, for the first time, hDASPO_369 isoforms; the latter protein showed a lower expression compared with the canonical isoform. Both protein isoforms are active (showing similar kinetic properties), localize to the peroxisomes, are very stable (a half-life of approximately 100 h has been estimated), and are primarily degraded through the ubiquitin-proteasome system. These studies shed light on the properties of hDASPO isoforms with the final aim to clarify the mechanisms controlling brain levels of the neuromodulator d-Asp.


Assuntos
D-Aspartato Oxidase/metabolismo , Escherichia coli/metabolismo , D-Aspartato Oxidase/análise , D-Aspartato Oxidase/genética , Ácido D-Aspártico/metabolismo , Escherichia coli/citologia , Humanos , Isoenzimas/análise , Isoenzimas/genética , Isoenzimas/metabolismo , Células Tumorais Cultivadas
3.
Free Radic Res ; 54(6): 419-430, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32623917

RESUMO

pLG72 is a primate-specific protein of enigmatic function that was proposed to modulate mitochondria fragmentation and the activity of the peroxisomal enzyme D-amino acid oxidase (DAAO). DAAO is deputed to degradation of the NMDA receptor co-agonist D-serine in human brain and the R199W substitution in DAAO was identified in a familial case of amyotrophic lateral sclerosis (ALS). A recent work reported that U87 glioblastoma cells ectopically expressing pLG72 showed a lower proliferation, produced superoxide radicals, induced SOD1 aggregation and decreased its activity. Because of the role of SOD1 in eliminating ROS species and its relevance in ALS we evaluated the link between pLG72 and SOD1 using both wild-type pLG72 and its R30K variant related to schizophrenia susceptibility. In vitro studies on recombinant proteins excluded the establishment of a stable complex and that pLG72 could affect SOD1 activity and stability. At cellular level, ectopic expression of pLG72 in glioblastoma U87 cells did not affect cell viability and ROS/superoxide production: only caspase activity (a marker of apoptosis) was slightly increased in cells expressing the R30K pLG72 variant. SOD1 and pLG72 did not colocalize in transfected U87 glioblastoma cells: pLG72 largely localised to mitochondria and SOD1 was largely cytosolic. Moreover, the ectopic expression of pLG72 appeared not to alter the expression of SOD1 and its aggregation. Altogether, the combination of biochemical and cellular studies allow to exclude that pLG72 modulates SOD1 function and aggregation, thus that it could play a role in ALS susceptibility.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Superóxido Dismutase-1/genética , Superóxidos/metabolismo , Humanos , Transfecção
4.
Cell Mol Life Sci ; 77(24): 5131-5148, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594192

RESUMO

L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Serina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Glicólise/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , Fosfoglicerato Desidrogenase/genética , Fosforilação/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/genética , Transdução de Sinais/genética
5.
Front Mol Biosci ; 6: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799256

RESUMO

The peroxisomal enzyme human D-amino acid oxidase (hDAAO) is attracting attention owing to its role in degrading D-serine, the main co-agonist of N-methyl D-aspartate receptors in brain, and its involvement in brain functions and diseases. Here, we focused on arginine 120, a residue located at the protein interface, 20 Å from the assumed second ligand-binding site, showing a different orientation of the side chain in the hDAAO-benzoate complex, and corresponding to Ser119 in rat DAAO, which is part of a putative nuclear translocation signal (NTS). By substituting Arg120 in hDAAO with a glutamate (to mimic the active NTS) or a leucine (to eliminate the positive charge) the protein conformation, thermal stability, and kinetic properties are slightly altered, while the dimeric structure and the ligand-binding properties are unchanged. The most relevant alteration in Arg120 variants is the strongest interaction with FAD. Nevertheless, the activity assayed at low D-serine and FAD concentrations (resembling physiological conditions) was quite similar for wild-type and Arg120 hDAAO variants. These results resemble the ones obtained substituting another residue located at the interface region (i.e., the W209R variant), indicating that substitutions at the monomer-monomer interface mainly affects the FAD binding in hDAAO. Indeed, U87 glioblastoma cells transiently transfected for hDAAO variants show that substitution of Arg120 favors mistargeting: the increase in cytosolic localization observed for the variants promotes nuclear targeting, especially for the R120E hDAAO, without affecting cell viability. Notably, mistargeting to the nucleus is an innate process as it is apparent for the wild-type hDAAO, too: whether such a process is related to specific pathologic processes is still unknown.

6.
PLoS One ; 13(4): e0196283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694413

RESUMO

L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degradation pathway. Alterations in proline metabolism have been described in various human diseases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, we report on the expression of wild-type and L441P variants of human PO in a U87 glioblastoma human cell line in an attempt to assess their effect on glutamate metabolism. The subcellular localization of the flavoenzyme is not altered in the L441P variant, for which specific activity is halved compared to the wild-type PO. While this decrease in activity is significantly less than that previously proposed, an effect of the substitution on the enzyme stability is also apparent in our studies. At 24 hours of growth from transient transfection, the intracellular level of proline, glutamate, and glutamine is decreased in cells expressing the PO variants as compared to control U87 cells, reaching a similar figure at 72 h. On the other hand, the extracellular levels of the three selected amino acids show a similar time course for all clones. Furthermore, PO overexpression does not modify to a significant extent the expression of GLAST and GLT-1 glutamate transporters. Altogether, these results demonstrate that the proline pathway links cellular proline levels with those of glutamate and glutamine. On this side, PO might play a regulatory role in glutamatergic neurotransmission by affecting the cellular concentration of glutamate.


Assuntos
Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Prolina Oxidase/metabolismo , Prolina/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glioblastoma , Ácido Glutâmico/análise , Glutamina/análise , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Prolina/análise , Prolina Oxidase/genética
7.
FEBS Lett ; 591(4): 646-655, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28166363

RESUMO

In the human brain, pLG72 interacts with the flavoenzyme d-amino acid oxidase (hDAAO), which is involved in catabolism of d-serine, a co-agonist of N-methyl-d-aspartate receptors (NMDAR). Here, we investigated the wild-type pLG72, the R30K variant associated with schizophrenia susceptibility, and the K62E variant. The protein conformation, oligomeric state, ligand-, and hDAAO-binding properties are only slightly modified by the substitutions. All pLG72 variants inhibit hDAAO and lead to an increase in cellular (d/d+l)-serine. However, the R30K pLG72 is significantly more prone to degradation than the R30 and the K62E variants in a cell system, thus possessing a lower ability to interact/inhibit hDAAO. This links R30K pLG72 with the hyperactivity of hDAAO, the decreased d-serine level, and NMDAR hypofunction observed in schizophrenia-affected patients.


Assuntos
Substituição de Aminoácidos , Proteínas de Transporte/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Esquizofrenia/genética , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Clorpromazina/química , Clorpromazina/metabolismo , Dicroísmo Circular , D-Aminoácido Oxidase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Serina/metabolismo
8.
Front Mol Biosci ; 4: 88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326945

RESUMO

D-amino acid oxidase catalyzes the oxidative deamination of D-amino acids. In the brain, the NMDA receptor coagonist D-serine has been proposed as its physiological substrate. In order to shed light on the mechanisms regulating D-serine concentration at the cellular level, we biochemically characterized human DAAO (hDAAO) in greater depth. In addition to clarify the physical-chemical properties of the enzyme, we demonstrated that divalent ions and nucleotides do not affect flavoenzyme function. Moreover, the definition of hDAAO substrate specificity demonstrated that D-cysteine is the best substrate, which made it possible to propose it as a putative physiological substrate in selected tissues. Indeed, the flavoenzyme shows a preference for hydrophobic amino acids, some of which are molecules relevant in neurotransmission, i.e., D-kynurenine, D-DOPA, and D-tryptophan. hDAAO shows a very low affinity for the flavin cofactor. The apoprotein form exists in solution in equilibrium between two alternative conformations: the one at higher affinity for FAD is favored in the presence of an active site ligand. This may represent a mechanism to finely modulate hDAAO activity by substrate/inhibitor presence. Taken together, the peculiar properties of hDAAO seem to have evolved in order to use this flavoenzyme in different tissues to meet different physiological needs related to D-amino acids.

9.
J Biomol Screen ; 20(10): 1218-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26296926

RESUMO

Genome-wide association studies have linked polymorphisms in the gene G72 to schizophrenia risk in several human populations. Although controversial, biochemical experiments have suggested that the mechanistic link of G72 to schizophrenia is due to the G72 protein product, pLG72, exerting a regulatory effect on human D-amino acid oxidase (hDAAO) activity. In an effort to identify hDAAO inhibitors of novel mechanism of action, we designed a pLG72-directed hDAAO activity assay suitable for high-throughput screening (HTS). During assay development, we confirmed that pLG72 was an inhibitor of hDAAO. Thus, our assay employed an IC20 pLG72 concentration that was high enough to allow dynamic pLG72-hDAAO complexes to form but with sufficient remaining hDAAO activity to measure during an HTS. After conducting an approximately 150,000-compound HTS, we further characterized a class of compound hits that were less potent hDAAO inhibitors when pLG72 was present. Focusing primarily on compound 2: [2-(2,5-dimethylphenyl)-6-fluorobenzo[d]isothiazol-3(2H)-on], we demonstrated that these compounds inhibited hDAAO via an allosteric, covalent mechanism. Although there is significant interest in the therapeutic potential of compound 2: and its analogues, their sensitivity to reducing agents and their capacity to bind cysteines covalently would need to be addressed during therapeutic drug development.


Assuntos
Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Esquizofrenia/tratamento farmacológico , Sítio Alostérico/efeitos dos fármacos , D-Aminoácido Oxidase/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neuralgia/tratamento farmacológico
10.
Biochim Biophys Acta ; 1854(9): 1150-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25701391

RESUMO

In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.


Assuntos
D-Aminoácido Oxidase/química , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Ligantes , Conformação Proteica , Relação Estrutura-Atividade , Transfecção
11.
FEBS J ; 281(3): 708-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24237903

RESUMO

Human D-amino acid oxidase (EC 1.4.3.3; hDAAO) is a peroxisomal flavoenzyme significantly enriched in the mammalian brain. hDAAO has been proposed to play (with serine racemase; EC 5.1.1.18) an essential role in the catabolism of D-serine, an 'atypical' key signalling molecule that acts as allosteric activator of the N-methyl-D-aspartate-type glutamate receptor (NMDAr). hDAAO and its interacting partner pLG72 have been related to schizophrenia, a highly disabling psychiatric disorder in which a dysfunction of NMDA-mediated neurotransmission is widely assumed to occur. We previously demonstrated that the D-serine cellular concentration depends on hDAAO and pLG72 expression levels and that newly-synthesized hDAAO interacts with its modulator in the cytosol, being progressively destabilized and inactivated. To obtain insight into the mechanisms regulating cellular D-serine levels, we investigated the degradation pathways of hDAAO and pLG72 in U87 glioblastoma cells stably expressing enhanced yellow fluorescent protein-hDAAO (peroxisomal), hDAAO-enhanced yellow fluorescent protein (cytosolic) or pLG72-enhanced cyan fluorescent protein (mitochondrial) proteins. hDAAO is a long-lived protein: the peroxisomal fraction of this flavoprotein is degraded via the lysosomal/endosomal pathway (and blocking this pathway increases the cellular hDAAO activity and decreases D-serine levels), whereas the cytosolic portion is ubiquitinated and targeted to the proteasome. By contrast, pLG72 shows a rapid turnover (t(1/2) ≈ 25-40 min) and is degraded via the proteasome system, albeit not ubiquitinated. Overexpression of pLG72 increases the turnover of hDAAO, in turn playing a protective role against excessive D-serine depletion.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Citosol/enzimologia , Citosol/metabolismo , D-Aminoácido Oxidase/genética , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Endossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Inibidores de Proteases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão , Ubiquitinação/efeitos dos fármacos
12.
Biochim Biophys Acta ; 1832(3): 400-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23219954

RESUMO

Considering the key role of d-serine in N-methyl-d-aspartate receptor-mediated neurotransmission, it is highly relevant to define the role that enzymes play in d-serine synthesis and degradation. In particular, the details of regulation of the d-serine catabolic human enzyme d-amino acid oxidase (hDAAO) are unknown although different lines of evidence have shown it to be involved in schizophrenia susceptibility. Here we investigated the effect of three single nucleotide polymorphisms and known mutations in hDAAO, i.e., D31H, R279A, and G331V. A very low amount of soluble G331V hDAAO is produced in E. coli cells: the recombinant variant enzyme is fully active. Human U87 glioblastoma cells transiently transfected for G331V hDAAO show a low viability, a significant amount of protein aggregates, and augmented apoptosis. The recombinant D31H and R279A hDAAO variants do not show alterations in tertiary and quaternary structures, thermal stability, binding affinity for inhibitors, and the modulator pLG72, whereas the kinetic efficiency and the affinity for d-serine and for FAD were higher than for the wild-type enzyme. While these effects for the substitution at position 31 cannot be structurally explained, the R279A mutation might affect the hDAAO FAD-binding affinity by altering the "structurally ambivalent" peptide V47-L51. In agreement with the observed increased activity, expression of D31H and R279A hDAAO variants in U87 cells produces a higher decrease in cellular d/(d+l) serine ratio than the wild-type counterpart. In vivo, these substitutions could affect cellular d-serine concentration and its release at synapsis and thus might be relevant for schizophrenia susceptibility.


Assuntos
D-Aminoácido Oxidase/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Esquizofrenia/genética , Apoptose/genética , Western Blotting , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Clorpromazina/química , Clorpromazina/metabolismo , Dicroísmo Circular , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Estabilidade Enzimática/genética , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Microscopia Confocal , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Risco , Esquizofrenia/enzimologia , Serina/metabolismo , Temperatura
13.
FEBS J ; 278(22): 4362-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21981077

RESUMO

D-Amino acid oxidase (DAAO; EC1.4.3.3) has been proposed to play a main role in the degradation of D-serine, an allosteric activator of the N-methyl-D-aspartate-type glutamate receptor in the human brain, and to be associated with the onset of schizophrenia. To prevent excessive D-serine degradation, novel drugs for schizophrenia treatment based on DAAO inhibition were designed and tested on rats. However, the properties of rat DAAO are unknown and various in vivo trials have demonstrated the effects of DAAO inhibitors on d-serine concentration in rats. In the present study, rat DAAO was efficiently expressed in Escherichia coli. The recombinant enzyme was purified as an active, 40 kDa monomeric flavoenzyme showing the basic properties of the dehydrogenase-oxidase class of flavoproteins. Rat DAAO differs significantly from the human counterpart because: (a) it possesses a different substrate specificity; (b) it shows a lower kinetic efficiency, mainly as a result of a low substrate affinity; (c) it differs in affinity for the binding of classical inhibitors; (d) it is a stable monomer in the absence of an active site ligand; and (e) it interacts with the mammalian protein modulator pLG72 yielding a ~100 kDa complex in addition to the ~200 kDa one, as formed by the human DAAO. Furthermore, the concentration of endogenous D-serine in U87 glioblastoma cells was not affected by transfection with rat DAAO, whereas it was significantly decreased when expressing the human homologue. These results raise doubt on the use of the rat as a model system for testing new drugs against schizophrenia and indicate a different physiological function of DAAO in rodents and humans.


Assuntos
D-Aminoácido Oxidase/metabolismo , Modelos Animais de Doenças , Glioblastoma/metabolismo , Esquizofrenia , Serina/metabolismo , Animais , Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/genética , Inibidores Enzimáticos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica , Conformação Proteica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Células Tumorais Cultivadas
14.
Mol Cell Neurosci ; 48(1): 20-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21679769

RESUMO

Accumulating genetic evidence indicates that the primate-specific gene locus G72/G30 is related to schizophrenia: it encodes for the protein pLG72, whose function is still the subject of controversy. We recently demonstrated that pLG72 negatively affects the activity of human d-amino acid oxidase (hDAAO, also related to schizophrenia susceptibility), which in neurons and (predominantly) in glia is expected to catabolize the neuromodulator d-serine. The d-serine regulation mechanism relying on hDAAO-pLG72 interaction does not match with the subcellular localizations proposed for hDAAO (peroxisomes) and pLG72 (mitochondria). By using glioblastoma U87 cells transfected with plasmids encoding for hDAAO and/or pLG72 we provide convergent lines of evidence that newly synthesized hDAAO, transitorily present in cytosol before being delivered to the peroxisomes, colocalizes and interacts with pLG72 which we propose to be exposed on the external membrane of mitochondria. We also report that newly synthesized cytosolic hDAAO is catalytically active, and therefore pLG72 binding-and ensuing hDAAO inactivation-plays a protective role against d-serine depletion.


Assuntos
Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/metabolismo , Neuroglia/metabolismo , Animais , Proteínas de Transporte/genética , Fracionamento Celular/métodos , Linhagem Celular , D-Aminoácido Oxidase/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
15.
J Biol Chem ; 283(32): 22244-56, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18544534

RESUMO

Human genes coding for pLG72 and d-amino acid oxidase have recently been linked to the onset of schizophrenia. pLG72 was proposed as an activator of the human FAD-containing flavoprotein d-amino acid oxidase (hDAAO). In the brain this oxidizes d-serine, a potent activator of N-methyl-d-aspartate receptor. We have investigated the mechanistic regulation of hDAAO by pLG72. Immunohistochemical analyses revealed that hDAAO and pLG72 are both expressed in astrocytes of the human cortex, where they most likely interact, considering their partial overlapping subcellular distribution and their coimmunoprecipitation. We demonstrated that the specific in vitro interaction of the two proteins yields a complex composed of 2 hDAAO homodimers and 2 pLG72 molecules. Binding of pLG72 did not affect the kinetic properties and FAD binding ability of hDAAO; instead, a time-dependent loss of hDAAO activity in the presence of an excess of pLG72 was found. The binding affects the tertiary structure of hDAAO, altering the amount of the active form. We finally demonstrated that overexpression of hDAAO in glioblastoma cells decreases the levels of d-serine, an effect that is null when pLG72 is coexpressed. These data indicate that pLG72 acts as a negative effector of hDAAO. Therefore, a decrease in the synaptic concentration of d-serine as the result of an anomalous increase in hDAAO activity related to hypoexpression of pLG72 may represent a molecular mechanism by which hDAAO and pLG72 are involved in schizophrenia susceptibility.


Assuntos
Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/metabolismo , Esquizofrenia/enzimologia , Serina/metabolismo , Animais , Carboxipeptidases/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Rim/enzimologia , Ligação Proteica , Suínos , Transfecção
16.
Appl Microbiol Biotechnol ; 78(1): 1-16, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18084756

RESUMO

D: -Amino acid oxidase (DAAO) is a biotechnologically relevant enzyme that is used in a variety of applications. DAAO is a flavine adenine dinucleotide-containing flavoenzyme that catalyzes the oxidative deamination of D-isomer of uncharged aliphatic, aromatic, and polar amino acids yielding the corresponding imino acid (which hydrolyzes spontaneously to the alpha-keto acid and ammonia) and hydrogen peroxide. This enzymatic activity is produced by few bacteria and by most eukaryotic organisms. In the past few years, DAAO from mammals has been the subject of a large number of investigations, becoming a model for the dehydrogenase-oxidase class of flavoproteins. However, DAAO from microorganisms show properties that render them more suitable for the biotechnological applications, such as a high level of protein expression (as native and recombinant protein), a high turnover number, and a tight binding of the coenzyme. Some important DAAO-producing microorganisms include Trigonopsis variabilis, Rhodotorula gracilis, and Fusarium solani. The aim of this paper is to provide an overview of the main biotechnological applications of DAAO (ranging from biocatalysis to convert cephalosporin C into 7-amino cephalosporanic acid to gene therapy for tumor treatment) and to illustrate the advantages of using the microbial DAAOs, employing both the native and the improved DAAO variants obtained by enzyme engineering.


Assuntos
Bactérias/enzimologia , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Fungos/enzimologia , Aminoácidos/metabolismo , Flavoproteínas/química , Peróxido de Hidrogênio/metabolismo
17.
J Phycol ; 36(3): 553-562, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29543999

RESUMO

A filamentous cyanobacterium, belonging to the Order of Oscillatoriales, was found to be responsible for a toxic algal bloom in Lake Varese, Italy, during the summer of 1997. Morphological characters, as well as near complete 16S rRNA gene sequencing, revealed that the dominant species of the bloom was most closely related to the genus Planktothrix. In addition, genetic analysis of the phycocyanin operon of Planktothrix sp. FP1 revealed a novel primary structure, previously undescribed within the cyanobacteria, which was used as a genetic marker for rapid detection and identification of this toxic strain. The occurrence of saxitoxin (STX), a principal toxin in paralytic shellfish poisoning (PSP), was confirmed in the natural bloom sample by both pre-column and post-column derivatization high-performance liquid chromatography (HPLC) analyses, and eventually by liquid chromatography/mass spectrometry (LC/MS). The toxicity of this field sample was also revealed by electrophysiological assays in which the extract inhibited 90% of the voltage-dependent Na+ current in human neuroblastoma cells at the STX concentration of 80 nM. The cultured strain showed a lower physiologic activity than the bloom sample (67% blockage of Na+ current at a toxin concentration of 200 nM), and STX was detected only by pre-column HPLC, indicating the presence of a compound structurally close to STX. Chemical and molecular genetic analyses performed here add Planktothrix sp. FP1 to the growing list of diverse cyanobacterial species capable of synthesizing STX and its related compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA