Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439138

RESUMO

Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common cancer worldwide. These tumors originate from epithelial cells of the upper aerodigestive tract. HNSCC tumors in different regions can have significantly different molecular characteristics. While many microRNAs (miRNAs) have been found to be involved in the regulation of the carcinogenesis and pathogenesis of HNSCC, new HNSCC related miRNAs are still being discovered. The aim of this study was to explore potential miRNA biomarkers that can be used to diagnose HNSCC and prognose survival of HNSCC patients. For this purpose, we chose a panel of 12 miRNAs: miR-146a-5p, miR-449a, miR-126-5p, miR-34a-5p, miR-34b-5p, miR-34c-5p, miR-217-5p, miR-378c, miR-6510-3p, miR-96-5p, miR-149-5p, and miR-133a-5p. Expression of these miRNAs was measured in tumor tissue and neighboring healthy tissue collected from patients diagnosed with HNSCC (n = 79) in either the oral cavity, oropharynx, or larynx. We observed a pattern of differentially expressed miRNAs at each of these cancer locations. Our study showed that some of these miRNAs, separately or in combination, could serve as biomarkers distinguishing between healthy and tumor tissue, and their expression correlated with patients' overall survival.

2.
J Gerontol A Biol Sci Med Sci ; 76(11): 1895-1905, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33406219

RESUMO

Cellular senescence contributes to age-related disorders including physical dysfunction, disabilities, and mortality caused by tissue inflammation and damage. Senescent cells accumulate in multiple tissues with aging and at etiological sites of multiple chronic disorders. The senolytic drug combination, Dasatinib plus Quercetin (D+Q), is known to reduce senescent cell abundance in aged mice. However, the effects of long-term D+Q treatment on intestinal senescent cell and inflammatory burden and microbiome composition in aged mice remain unknown. Here, we examine the effect of D+Q on senescence (p16Ink4a and p21Cip1) and inflammation (Cxcl1, Il1ß, Il6, Mcp1, and Tnfα) markers in small (ileum) and large (caecum and colon) intestine in aged mice (n = 10) compared to age-matched placebo-treated mice (n = 10). Additionally, we examine microbial composition along the intestinal tract in these mice. D+Q-treated mice show significantly lower senescent cell (p16 and p21 expression) and inflammatory (Cxcl1, Il1ß, Il6, Mcp1, and Tnfα expression) burden in small and large intestine compared with control mice. Further, we find specific microbial signatures in ileal, cecal, colonic, and fecal regions that are distinctly modulated by D+Q, with modulation being most prominent in small intestine. Further analyses reveal specific correlation of senescence and inflammation markers with specific microbial signatures. Together, these data demonstrate that the senolytic treatment reduces intestinal senescence and inflammation while altering specific microbiota signatures and suggest that the optimized senolytic regimens might improve health via reducing intestinal senescence, inflammation, and microbial dysbiosis in older subjects.


Assuntos
Dasatinibe , Microbioma Gastrointestinal , Quercetina , Animais , Biomarcadores , Senescência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Inflamação/tratamento farmacológico , Interleucina-6 , Intestinos , Camundongos , Quercetina/farmacologia , Senoterapia , Fator de Necrose Tumoral alfa
3.
Exp Gerontol ; 132: 110851, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987917

RESUMO

The aim of this study was to evaluate the effect of growth hormone (GH) deficiency in primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of young mice. Ovaries from six-month-old GH-deficient Ames Dwarf (df/df) and Normal (N/df) mice were used. The number of primordial follicles was higher in df/df mice (p = 0.0026). Also, df/df mice had a lower number of primary (p = 0.023), secondary (p = 0.0052) and tertiary (p = 0.019) follicles. These findings indicate a slower rate of primordial follicle activation in df/df mice. Female df/df mice had decreased γH2AX foci intensity in oocytes of primordial (p = 0.015) and primary (p = 0.0004) follicles compared to N/df mice. Also, df/df mice had reduced γH2AX intensity in granulosa cells of primordial (p = 0.0002) and primary (p < 0.0001) follicles. Overall, this indicate to us that df/df mice accumulate less DNA damage in the ovarian reserve compared to N/df mice. Additionally, macrophage infiltration was also reduced in ovaries of df/df mice compared to N/df mice (p = 0.033). Interestingly, df/df mice had a reduced number of granulosa cells around primordial (p = 0.0024) and primary (p = 0.007) follicles compared to N/df mice. Also, df/df mice had a small diameter of primordial follicle nuclei (p = 0.0093), secondary follicle oocyte (p = 0.046) and tertiary follicle (p = 0.012). This points to the role of granulosa cell proliferation and oocyte growth for primordial follicle activation. The current study points to the role of the GH/IGF-I axis in extending lifespan of reproductive health, along with maintenance of oocyte DNA integrity and reduced ovarian inflammation.


Assuntos
Dano ao DNA , Macrófagos/fisiologia , Folículo Ovariano/fisiologia , Reserva Ovariana/genética , Animais , Feminino , Células da Granulosa/fisiologia , Hormônio do Crescimento/deficiência , Longevidade , Camundongos , Oócitos/fisiologia , Ovário/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA