Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474420

RESUMO

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Assuntos
Dinoprostona , Niacinamida/análogos & derivados , Compostos de Piridínio , Sirtuína 3 , Humanos , Dinoprostona/metabolismo , Ligantes , Receptores CCR7/metabolismo , Macrófagos/metabolismo
2.
Immunohorizons ; 7(8): 587-599, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610299

RESUMO

Activated B cells experience metabolic changes that require mitochondrial remodeling, in a process incompletely defined. In this study, we report that mitochondrial antiviral signaling protein (MAVS) is involved in BCR-initiated cellular proliferation and prolonged survival. MAVS is well known as a mitochondrial-tethered signaling adaptor with a central role in viral RNA-sensing pathways that induce type I IFN. The role of MAVS downstream of BCR stimulation was recognized in absence of IFN, indicative of a path for MAVS activation that is independent of viral infection. Mitochondria of BCR-activated MAVS-deficient mouse B cells exhibited a damaged phenotype including disrupted mitochondrial morphology, excess mitophagy, and the temporal progressive blunting of mitochondrial oxidative capacity with mitochondrial hyperpolarization and cell death. Costimulation of MAVS-deficient B cells with anti-CD40, in addition to BCR stimulation, partially corrected the mitochondrial structural defects and functionality. Our data reveal a (to our knowledge) previously unrecognized role of MAVS in controlling the metabolic fitness of B cells, most noticeable in the absence of costimulatory help.


Assuntos
Linfócitos B , Transdução de Sinais , Animais , Camundongos , Antígenos CD40 , Proliferação de Células , Mitocôndrias
3.
Oncogene ; 42(13): 1024-1037, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759571

RESUMO

Metabolic reprogram is crucial to support cancer cell growth and movement as well as determine cell fate. Mitochondrial protein acetylation regulates mitochondrial metabolism, which is relevant to cancer cell migration and invasion. The functional role of mitochondrial protein acetylation on cancer cell migration remains unclear. General control of amino acid synthesis 5 like-1(GCN5L1), as the regulator of mitochondrial protein acetylation, functions on metabolic reprogramming in mouse livers. In this study, we find that GCN5L1 expression is significantly decreased in metastatic HCC tissues. Loss of GCN5L1 promotes reactive oxygen species (ROS) generation through enhanced fatty acid oxidation (FAO), followed by activation of cellular ERK and DRP1 to promote mitochondrial fission and epithelia to mesenchymal transition (EMT) to boost cell migration. Moreover, palmitate and carnitine-stimulated FAO promotes mitochondrial fission and EMT gene expression to activate HCC cell migration. On the other hand, increased cellular acetyl-CoA level, the product of FAO, enhances HCC cell migration. Taken together, our finding uncovers the metastasis suppressor role as well as the underlying mechanism of GCN5L1 in HCC and also provides evidence of FAO retrograde control of HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
Clin Transl Med ; 12(5): e852, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35538890

RESUMO

BACKGROUND: Glutaminolysis is a critical metabolic process that promotes cancer cell proliferation, including hepatocellular carcinoma (HCC). Delineating the molecular control of glutaminolysis could identify novel targets to ameliorate this oncogenic metabolic pathway. Here, we evaluated the role of general control of amino acid synthesis 5 like 1 (GCN5L1), a regulator of mitochondrial protein acetylation, in modulating the acetylation and activity of glutaminase to regulate HCC development. METHODS: Cell proliferation was determined by MTT, 2D and soft agar clone formation assays and orthotopic tumour assays in nude mice. GLS1/2 acetylation and activities were measured in cells and tumours to analyse the correlation with GCN5L1 expression and mTORC1 activation. RESULTS: Hepatic GCN5L1 ablation in mice markedly increased diethylnitrosamine (DEN)-induced HCC, and conversely, the transduction of mitochondrial-restricted GCN5L1 protected wild-type mice against HCC progression in response to DEN and carbon tetrachloride (CCl4 ) exposure. GCN5L1-depleted HepG2 hepatocytes enhanced tumour growth in athymic nude mice. Mechanistically, GCN5L1 depletion promoted cell proliferation through mTORC1 activation. Interestingly, liver-enriched glutaminase 2 (GLS2) appears to play a greater role than ubiquitous and canonical tumour-enriched glutaminase 1 (GLS1) in promoting murine HCC. Concurrently, GCN5L1 promotes acetylation and inactivation of both isoforms and increases enzyme oligomerisation. In human HCC tumours compared to adjacent tissue, there were variable levels of mTORC1 activation, GCN5L1 levels and glutaminase activity. Interestingly, the levels of GCN5L1 inversely correlated with mTORC1 activity and glutaminase activity in these tumours. CONCLUSIONS: Our study identified that glutaminase activity, rather than GLS1 or GLS2 expression, is the key factor in HCC development that activates mTORC1 and promotes HCC. In the Kaplan-Meier analysis of liver cancer, we found that HCC patients with high GCN5L1 expression survived longer than those with low GCN5L1 expression. Collectively, GCN5L1 functions as a tumour regulator by modulating glutaminase acetylation and activity in the development of HCC.


Assuntos
Carcinoma Hepatocelular , Glutaminase , Neoplasias Hepáticas , Proteínas Mitocondriais , Proteínas do Tecido Nervoso , Acetilação , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Front Immunol ; 12: 657293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079545

RESUMO

Constitutive activity of the immune surveillance system detects and kills cancerous cells, although many cancers have developed strategies to avoid detection and to resist their destruction. Cancer immunotherapy entails the manipulation of components of the endogenous immune system as targeted approaches to control and destroy cancer cells. Since one of the major limitations for the antitumor activity of immune cells is the immunosuppressive tumor microenvironment (TME), boosting the immune system to overcome the inhibition provided by the TME is a critical component of oncotherapeutics. In this article, we discuss the main effects of the TME on the metabolism and function of immune cells, and review emerging strategies to potentiate immune cell metabolism to promote antitumor effects either as monotherapeutics or in combination with conventional chemotherapy to optimize cancer management.


Assuntos
Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Metabolismo Energético , Neoplasias/etiologia , Neoplasias/metabolismo , Imunidade Adaptativa , Animais , Comunicação Celular/imunologia , Citocinas/metabolismo , Gerenciamento Clínico , Humanos , Imunidade Inata , Imunomodulação , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
6.
Biochem J ; 476(12): 1713-1724, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31138772

RESUMO

GCN5L1 regulates protein acetylation and mitochondrial energy metabolism in diverse cell types. In the heart, loss of GCN5L1 sensitizes the myocardium to injury from exposure to nutritional excess and ischemia/reperfusion injury. This phenotype is associated with the reduced acetylation of metabolic enzymes and elevated mitochondrial reactive oxygen species (ROS) generation, although the direct molecular targets of GCN5L1 remain largely unknown. In this study, we sought to determine the mechanism by which GCN5L1 impacts energy substrate utilization and mitochondrial health. We find that hypoxia and reoxygenation (H/R) leads to a reduction in cell viability and Akt phosphorylation in GCN5L1 knockdown AC16 cardiomyocytes, in parallel with elevated glucose utilization and impaired fatty acid use. We demonstrate that glycolysis is uncoupled from glucose oxidation under normoxic conditions in GCN5L1-depleted cells. We show that GCN5L1 directly binds to the Akt-activating mTORC2 component Rictor, and that loss of Rictor acetylation is evident in GCN5L1 knockdown cells. Finally, we show that restoring Rictor acetylation in GCN5L1-depleted cells reduces mitochondrial ROS generation and increases cell survival in response to H/R. These studies suggest that GCN5L1 may play a central role in energy substrate metabolism and cell survival via the regulation of Akt/mTORC2 signaling.


Assuntos
Glucose/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Morte Celular/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Glucose/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Proteínas Mitocondriais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Oxirredução , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo
7.
Glia ; 66(11): 2427-2437, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30378174

RESUMO

Loss of substantia nigra dopaminergic neurons results in Parkinson disease (PD). Degenerative PD usually presents in the seventh decade whereas genetic disorders, including mutations in PARK2, predispose to early onset PD. PARK2 encodes the parkin E3 ubiquitin ligase which confers pleotropic effects on mitochondrial and cellular fidelity and as a mediator of endoplasmic reticulum (ER) stress signaling. Although the majority of studies investigating ameliorative effects of parkin focus on dopaminergic neurons we found that astrocytes are enriched with parkin. Furthermore, astrocytes deficient in parkin display stress-induced elevation of nucleotide-oligomerization domain receptor 2 (NOD2), a cytosolic receptor integrating ER stress and inflammation. Given the neurotropic and immunomodulatory role of astrocytes we reasoned that parkin may regulate astrocyte ER stress and inflammation to control neuronal homeostasis. We show that, in response to ER stress, parkin knockdown astrocytes exhibit exaggerated ER stress, JNK activation and cytokine release, and reduced neurotropic factor expression. In coculture studied we demonstrate that dopaminergic SHSY5Y cells and primary neurons with the presence of parkin depleted astrocytes are more susceptible to ER stress and inflammation-induced apoptosis than wildtype astrocytes. Parkin interacted with, ubiquitylated and diminished NOD2 levels. Additionally, the genetic induction of parkin ameliorated inflammation in NOD2 expressing cells and knockdown of NOD2 in astrocytes suppressed inflammatory defects in parkin deficient astrocytes and concurrently blunted neuronal apoptosis. Collectively these data identify a role for parkin in modulating NOD2 as a regulatory node in astrocytic control of neuronal homeostasis.


Assuntos
Astrócitos/ultraestrutura , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/patologia , Fatores de Crescimento Neural/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Ubiquitina-Proteína Ligases/deficiência , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Proteína Oncogênica p55(v-myc)/metabolismo , Oxidopamina/farmacologia , Fator de Transcrição CHOP/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
J Biol Chem ; 293(46): 17676-17684, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30323061

RESUMO

Sirtuin 3 (SIRT3) deacetylates and activates several mitochondrial fatty acid oxidation enzymes in the liver. Here, we investigated whether the protein acetylase GCN5 general control of amino acid synthesis 5-like 1 (GCN5L1), previously shown to oppose SIRT3 activity, is involved in the regulation of hepatic fatty acid oxidation. We show that GCN5L1 abundance is significantly up-regulated in response to an acute high-fat diet (HFD). Transgenic GCN5L1 overexpression in the mouse liver increased protein acetylation levels, and proteomic detection of specific lysine residues identified numerous sites that are co-regulated by GCN5L1 and SIRT3. We analyzed several fatty acid oxidation proteins identified by the proteomic screen and found that hyperacetylation of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit α (HADHA) correlates with increased GCN5L1 levels. Stable GCN5L1 knockdown in HepG2 cells reduced HADHA acetylation and increased activities of fatty acid oxidation enzymes. Mice with a liver-specific deletion of GCN5L1 were protected from hepatic lipid accumulation following a chronic HFD and did not exhibit hyperacetylation of HADHA compared with WT controls. Finally, we found that GCN5L1-knockout mice lack HADHA that is hyperacetylated at three specific lysine residues (Lys-350, Lys-383, and Lys-406) and that acetylation at these sites is significantly associated with increased HADHA activity. We conclude that GCN5L1-mediated regulation of mitochondrial protein acetylation plays a role in hepatic metabolic homeostasis.


Assuntos
Ácidos Graxos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetilação , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Células Hep G2 , Humanos , Lisina/química , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Proteínas do Tecido Nervoso/genética , Oxirredução , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Sirtuína 3/genética
9.
Sci Rep ; 7(1): 17867, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259245

RESUMO

Survival of antibody-secreting plasma cells (PCs) is vital for sustained antibody production. However, it remains poorly understood how long-lived PCs (LLPCs) are generated and maintained. Here we report that ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is preferentially upregulated in bone marrow LLPCs compared with their splenic short-lived counterparts (SLPCs). We studied ENPP1-deficient mice (Enpp1 -/- ) to determine how the enzyme affects PC biology. Although Enpp1 -/- mice generated normal levels of germinal center B cells and plasmablasts in periphery, they produced significantly reduced numbers of LLPCs following immunization with T-dependent antigens or infection with plasmodium C. chabaudi. Bone marrow chimeric mice showed B cell intrinsic effect of ENPP1 selectively on generation of bone marrow as well as splenic LLPCs. Moreover, Enpp1 -/- PCs took up less glucose and had lower levels of glycolysis than those of wild-type controls. Thus, ENPP1 deficiency confers an energetic disadvantage to PCs for long-term survival and antibody production.


Assuntos
Trifosfato de Adenosina/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Plasmócitos/metabolismo , Pirofosfatases/metabolismo , Animais , Formação de Anticorpos/imunologia , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Centro Germinativo/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo , Regulação para Cima/fisiologia
10.
Nat Commun ; 8(1): 523, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900165

RESUMO

The mitochondrial enriched GCN5-like 1 (GCN5L1) protein has been shown to modulate mitochondrial protein acetylation, mitochondrial content and mitochondrial retrograde signaling. Here we show that hepatic GCN5L1 ablation reduces fasting glucose levels and blunts hepatic gluconeogenesis without affecting systemic glucose tolerance. PEPCK and G6Pase transcript levels are downregulated in hepatocytes from GCN5L1 liver specific knockout mice and their upstream regulator, FoxO1 protein levels are decreased via proteasome-dependent degradation and via reactive oxygen species mediated ERK-1/2 phosphorylation. ERK inhibition restores FoxO1, gluconeogenic enzyme expression and glucose production. Reconstitution of mitochondrial-targeted GCN5L1 blunts mitochondrial ROS, ERK activation and increases FoxO1, gluconeogenic enzyme expression and hepatocyte glucose production. We suggest that mitochondrial GCN5L1 modulates post-translational control of FoxO1, regulates gluconeogenesis and controls metabolic pathways via mitochondrial ROS mediated ERK activation. Exploring mechanisms underpinning GCN5L1 mediated ROS signaling may expand our understanding of the role of mitochondria in gluconeogenesis control.Hepatic gluconeogenesis is tightly regulated at transcriptional level and is essential for survival during prolonged fasting. Here Wang et al. show that the mitochondrial enriched GCN5-like 1 protein controls hepatic glucose production by regulating FoxO1 protein levels via proteasome-dependent degradation and, in turn, gluconeogenic gene expression.


Assuntos
Proteína Forkhead Box O1/metabolismo , Gluconeogênese , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Proteína Forkhead Box O1/genética , Expressão Gênica , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais , Proteínas do Tecido Nervoso/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
11.
J Biol Chem ; 292(29): 12153-12164, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28584055

RESUMO

Twenty-four hours of fasting is known to blunt activation of the human NLRP3 inflammasome. This effect might be mediated by SIRT3 activation, controlling mitochondrial reactive oxygen species. To characterize the molecular underpinnings of this fasting effect, we comparatively analyzed the NLRP3 inflammasome response to nutrient deprivation in wild-type and SIRT3 knock-out mice. Consistent with previous findings for human NLRP3, prolonged fasting blunted the inflammasome in wild-type mice but not in SIRT3 knock-out mice. In SIRT3 knock-out bone marrow-derived macrophages, NLRP3 activation promoted excess cytosolic extrusion of mitochondrial DNA along with increased reactive oxygen species and reduced superoxide dismutase 2 (SOD2) activity. Interestingly, the negative regulatory effect of SIRT3 on NLRP3 was not due to transcriptional control or priming of canonical inflammasome components but, rather, occurred via SIRT3-mediated deacetylation of mitochondrial SOD2, leading to SOD2 activation. We also found that siRNA knockdown of SIRT3 or SOD2 increased NLRP3 supercomplex formation and activation. Moreover, overexpression of wild-type and constitutively active SOD2 similarly blunted inflammasome assembly and activation, effects that were abrogated by acetylation mimic-modified SOD2. Finally, in vivo administration of lipopolysaccharide increased liver injury and the levels of peritoneal macrophage cytokines, including IL-1ß, in SIRT3 KO mice. These results support the emerging concept that enhancing mitochondrial resilience against damage-associated molecular patterns may play a pivotal role in preventing inflammation and that the anti-inflammatory effect of fasting-mimetic diets may be mediated, in part, through SIRT3-directed blunting of NLRP3 inflammasome assembly and activation.


Assuntos
Jejum , Inflamassomos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/química
12.
Sci Rep ; 7(1): 2093, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522833

RESUMO

The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Estresse do Retículo Endoplasmático , Miócitos Cardíacos/metabolismo , Fator de Transcrição CHOP/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Cardiomiopatia Dilatada/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Ubiquitina-Proteína Ligases/genética , Remodelação Ventricular
13.
Nature ; 492(7428): 199-204, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23201684

RESUMO

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Assuntos
Necrose/enzimologia , Sirtuína 2/genética , Sirtuína 2/metabolismo , Acetilação , Animais , Linhagem Celular , Feminino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Masculino , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
14.
Free Radic Biol Med ; 52(2): 281-90, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22085655

RESUMO

For much of the time since their discovery, the sirtuin family of deacetylase enzymes has been associated with extension of life span. This longevity-promoting capacity in numerous model systems has enabled the sirtuins to gain "celebrity status" in the field of aging research. However, the mechanisms underpinning these changes remain incompletely defined. A general phenotype long associated with aging is the dysregulation of biological systems, which partly occurs via the accumulation of damage over time. One of the major sources of this damage is oxidative stress, which can harm both biological structures and the mechanisms with which they are repaired. It is now becoming clear that the beneficial life-span effects of sirtuins, along with many of their other functions, are closely linked to their ability to regulate systems that control the redox environment. Here we investigate the links between sirtuins and their oxidative/redox environment and review the control mechanisms that are regulated by the activity of sirtuin deacetylase proteins.


Assuntos
Estresse Oxidativo , Sirtuínas/metabolismo , Animais , Cardiomegalia/enzimologia , Hipóxia Celular , Núcleo Celular/metabolismo , Transformação Celular Neoplásica , Regulação da Expressão Gênica , Humanos , Doenças Metabólicas/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética
15.
J Biol Chem ; 286(46): 40184-92, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21930693

RESUMO

The mitochondrial permeability transition pore (mPTP) opening plays a critical role in mediating cell death during ischemia/reperfusion (I/R) injury. Our previous studies have shown that cysteine 203 of cyclophilin D (CypD), a critical mPTP mediator, undergoes protein S-nitrosylation (SNO). To investigate the role of cysteine 203 in mPTP activation, we mutated cysteine 203 of CypD to a serine residue (C203S) and determined its effect on mPTP opening. Treatment of WT mouse embryonic fibroblasts (MEFs) with H(2)O(2) resulted in an 50% loss of the mitochondrial calcein fluorescence, suggesting substantial activation of the mPTP. Consistent with the reported role of CypD in mPTP activation, CypD null (CypD(-/-)) MEFs exhibited significantly less mPTP opening. Addition of a nitric oxide donor, GSNO, to WT but not CypD(-/-) MEFs prior to H(2)O(2) attenuated mPTP opening. To test whether Cys-203 is required for this protection, we infected CypD(-/-) MEFs with a C203S-CypD vector. Surprisingly, C203S-CypD reconstituted MEFs were resistant to mPTP opening in the presence or absence of GSNO, suggesting a crucial role for Cys-203 in mPTP activation. To determine whether mutation of C203S-CypD would alter mPTP in vivo, we injected a recombinant adenovirus encoding C203S-CypD or WT CypD into CypD(-/-) mice via tail vein. Mitochondria isolated from livers of CypD(-/-) mice or mice expressing C203S-CypD were resistant to Ca(2+)-induced swelling as compared with WT CypD-reconstituted mice. Our results indicate that the Cys-203 residue of CypD is necessary for redox stress-induced activation of mPTP.


Assuntos
Ciclofilinas/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Cisteína , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial , Mutação de Sentido Incorreto , Doadores de Óxido Nítrico , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos
16.
J Cell Physiol ; 226(9): 2457-68, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21660969

RESUMO

PKCε is central to cardioprotection. Sub-proteome analysis demonstrated co-localization of activated cardiac PKCε (aPKCε) with metabolic, mitochondrial, and cardioprotective modulators like hypoxia-inducible factor 1α (HIF-1α). aPKCε relocates to the mitochondrion, inactivating glycogen synthase kinase 3ß (GSK3ß) to modulate glycogen metabolism, hypertrophy and HIF-1α. However, there is no established mechanistic link between PKCε, p-GSK3ß and HIF1-α. Here we hypothesized that cardiac-restricted aPKCε improves mitochondrial response to hypobaric hypoxia by altered substrate fuel selection via a GSK3ß/HIF-1α-dependent mechanism. aPKCε and wild-type (WT) mice were exposed to 14 days of hypobaric hypoxia (45 kPa, 11% O(2)) and cardiac metabolism, functional parameters, p-GSK3ß/HIF-1α expression, mitochondrial function and ultrastructure analyzed versus normoxic controls. Mitochondrial ADP-dependent respiration, ATP production and membrane potential were attenuated in hypoxic WT but maintained in hypoxic aPKCε mitochondria (P < 0.005, n = 8). Electron microscopy revealed a hypoxia-associated increase in mitochondrial number with ultrastructural disarray in WT versus aPKCε hearts. Concordantly, left ventricular work was diminished in hypoxic WT but not aPKCε mice (glucose only perfusions). However, addition of palmitate abrogated this (P < 0.05 vs. WT). aPKCε hearts displayed increased glucose utilization at baseline and with hypoxia. In parallel, p-GSK3ß and HIF1-α peptide levels were increased in hypoxic aPKCε hearts versus WT. Our study demonstrates that modest, sustained PKCε activation blunts cardiac pathophysiologic responses usually observed in response to chronic hypoxia. Moreover, we propose that preferential glucose utilization by PKCε hearts is orchestrated by a p-GSK3ß/HIF-1α-mediated mechanism, playing a crucial role to sustain contractile function in response to chronic hypobaric hypoxia.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Oxigênio/farmacologia , Pressão , Proteína Quinase C-épsilon/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Testes de Função Cardíaca , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Miocárdio/patologia , Miocárdio/ultraestrutura , Oxigênio/metabolismo , Peptídeos/metabolismo , Perfusão , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
17.
PLoS One ; 6(5): e19785, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21589870

RESUMO

Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.


Assuntos
Neoplasias Experimentais/etiologia , Oxigênio/metabolismo , Neoplasias Cutâneas/etiologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Sequência de Bases , Western Blotting , Carcinógenos/toxicidade , Primers do DNA , Feminino , Instabilidade Genômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neoplasias Experimentais/induzido quimicamente , Neoplasias Cutâneas/induzido quimicamente
18.
Sci Signal ; 4(158): ra6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21285411

RESUMO

The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, ß-catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. ß-Catenin also modulated hepatic insulin signaling. Furthermore, ß-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with ß-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of ß-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of ß-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues.


Assuntos
Glucose/metabolismo , Fígado/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Citosol/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfatase/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/citologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosfoenolpiruvato Carboxilase/genética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inanição/metabolismo , Inanição/fisiopatologia , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
19.
J Exp Med ; 208(3): 519-33, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21282379

RESUMO

Reactive oxygen species (ROS) have an established role in inflammation and host defense, as they kill intracellular bacteria and have been shown to activate the NLRP3 inflammasome. Here, we find that ROS generated by mitochondrial respiration are important for normal lipopolysaccharide (LPS)-driven production of several proinflammatory cytokines and for the enhanced responsiveness to LPS seen in cells from patients with tumor necrosis factor receptor-associated periodic syndrome (TRAPS), an autoinflammatory disorder caused by missense mutations in the type 1 TNF receptor (TNFR1). We find elevated baseline ROS in both mouse embryonic fibroblasts and human immune cells harboring TRAPS-associated TNFR1 mutations. A variety of antioxidants dampen LPS-induced MAPK phosphorylation and inflammatory cytokine production. However, gp91(phox) and p22(phox) reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits are dispensable for inflammatory cytokine production, indicating that NADPH oxidases are not the source of proinflammatory ROS. TNFR1 mutant cells exhibit altered mitochondrial function with enhanced oxidative capacity and mitochondrial ROS generation, and pharmacological blockade of mitochondrial ROS efficiently reduces inflammatory cytokine production after LPS stimulation in cells from TRAPS patients and healthy controls. These findings suggest that mitochondrial ROS may be a novel therapeutic target for TRAPS and other inflammatory diseases.


Assuntos
Síndromes Periódicas Associadas à Criopirina/imunologia , Citocinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Animais , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/fisiopatologia , Citocinas/imunologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Interleucina-6/imunologia , Interleucina-6/fisiologia , Camundongos , Camundongos Mutantes , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Mutação , Óxido Nítrico/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA