Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Neurobiol ; 77(3): 354-372, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27706918

RESUMO

It is important to study the neural connectivities and functions in primates. For this purpose, it is critical to be able to transfer genes to certain neurons in the primate brain so that we can image the neuronal signals and analyze the function of the transferred gene. Toward this end, our team has been developing gene transfer systems using viral vectors. In this review, we summarize our current achievements as follows. 1) We compared the features of gene transfer using five different AAV serotypes in combination with three different promoters, namely, CMV, mouse CaMKII (CaMKII), and human synapsin 1 (hSyn1), in the marmoset cortex with those in the mouse and macaque cortices. 2) We used target-specific double-infection techniques in combination with TET-ON and TET-OFF using lentiviral retrograde vectors for enhanced visualization of neural connections. 3) We used an AAV-mediated gene transfer method to study the transcriptional control for amplifying fluorescent signals using the TET/TRE system in the primate neocortex. We also established systems for shRNA mediated gene targeting in a neocortical region where a gene is significantly expressed and for expressing the gene using the CMV promoter for an unexpressed neocortical area in the primate cortex using AAV vectors to understand the regulation of downstream genes. Our findings have demonstrated the feasibility of using viral vector mediated gene transfer systems for the study of primate cortical circuits using the marmoset as an animal model. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 354-372, 2017.


Assuntos
Callithrix/fisiologia , Córtex Cerebral/fisiologia , Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos/fisiologia , Modelos Animais , Rede Nervosa/fisiologia , Animais , Humanos
2.
Cell Rep ; 13(9): 1989-99, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655910

RESUMO

Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Animais , Axônios/metabolismo , Callithrix , Dendritos/metabolismo , Dependovirus/genética , Doxorrubicina/toxicidade , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Neurônios/efeitos dos fármacos , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/metabolismo , Tetraciclina/farmacologia
3.
eNeuro ; 2(4)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465000

RESUMO

Two-photon microscopy in combination with a technique involving the artificial expression of fluorescent protein has enabled the direct observation of dendritic spines in living brains. However, the application of this method to primate brains has been hindered by the lack of appropriate labeling techniques for visualizing dendritic spines. Here, we developed an adeno-associated virus vector-based fluorescent protein expression system for visualizing dendritic spines in vivo in the marmoset neocortex. For the clear visualization of each spine, the expression of reporter fluorescent protein should be both sparse and strong. To fulfill these requirements, we amplified fluorescent signals using the tetracycline transactivator (tTA)-tetracycline-responsive element system and by titrating down the amount of Thy1S promoter-driven tTA for sparse expression. By this method, we were able to visualize dendritic spines in the marmoset cortex by two-photon microscopy in vivo and analyze the turnover of spines in the prefrontal cortex. Our results demonstrated that short spines in the marmoset cortex tend to change more frequently than long spines. The comparison of in vivo samples with fixed samples showed that we did not detect all existing spines by our method. Although we found glial cell proliferation, the damage of tissues caused by window construction was relatively small, judging from the comparison of spine length between samples with or without window construction. Our new labeling technique for two-photon imaging to visualize in vivo dendritic spines of the marmoset neocortex can be applicable to examining circuit reorganization and synaptic plasticity in primates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA