Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 11, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650518

RESUMO

BACKGROUND: Ischemic stroke in white matter of the brain induces not only demyelination, but also neuroinflammation. Peripheral T lymphocytes, especially regulatory T cells (Tregs), are known to infiltrate into ischemic brain and play a crucial role in modulation of inflammatory response there. We previously reported that transplantation of vascular endothelial cells generated from human induced pluripotent stem cells (iVECs) ameliorated white matter infarct. The aim of this study is to investigate contribution of the immune system, especially Tregs, to the mechanism whereby iVEC transplantation ameliorates white matter infarct. METHODS: iVECs and human Tregs were transplanted into the site of white matter lesion seven days after induction of ischemia. The egress of T lymphocytes from lymph nodes was sequestered by treating the animals with fingolimod (FTY720). The infarct size was evaluated by magnetic resonance imaging. Immunohistochemistry was performed to detect the activated microglia and macrophages, T cells, Tregs, and oligodendrocyte lineage cells. Remyelination was examined by Luxol fast blue staining. RESULTS: iVEC transplantation reduced ED-1+ inflammatory cells and CD4+ T cells, while increased Tregs in the white matter infarct. Treatment of the animals with FTY720 suppressed neuroinflammation and reduced the number of both CD4+ T cells and Tregs in the lesion, suggesting the importance of infiltration of these peripheral immune cells into the lesion in aggravation of neuroinflammation. Suppression of neuroinflammation by FTY720 per se, however, did not promote remyelination in the infarct. FTY720 treatment negated the increase in the number of Tregs by iVEC transplantation in the infarct, and attenuated remyelination promoted by transplanted iVECs, while it did not affect the number of oligodendrocyte lineage cells increased by iVEC transplantation. Transplantation of Tregs together with iVECs into FTY720-treated ischemic white matter did not affect the number of oligodendrocyte lineage cells, while it remarkably promoted myelin regeneration. CONCLUSIONS: iVEC transplantation suppresses neuroinflammation, but suppression of neuroinflammation per se does not promote remyelination. Recruitment of Tregs by transplanted iVECs contributes significantly to promotion of remyelination in the injured white matter.


Assuntos
Células-Tronco Pluripotentes Induzidas , Substância Branca , Animais , Humanos , Substância Branca/patologia , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Linfócitos T Reguladores , Células Endoteliais , Doenças Neuroinflamatórias , Encéfalo/patologia , Isquemia/patologia , Infarto
2.
Mol Brain ; 14(1): 90, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118975

RESUMO

Homer is a postsynaptic scaffold protein, which has long and short isoforms. The long form of Homer consists of an N-terminal target-binding domain and a C-terminal multimerization domain, linking multiple proteins within a complex. The short form of Homer only has the N-terminal domain and likely acts as a dominant negative regulator. Homer2a, one of the long form isoforms of the Homer family, expresses with a transient peak in the early postnatal stage of mouse cerebellar granule cells (CGCs); however, the functions of Homer2a in CGCs are not fully understood yet. In this study, we investigated the physiological roles of Homer2a in CGCs using recombinant adenovirus vectors. Overexpression of the Homer2a N-terminal domain construct, which was made structurally reminiscent with Homer1a, altered NMDAR1 localization, decreased NMDA currents, and promoted the survival of CGCs. These results suggest that the Homer2a N-terminal domain acts as a dominant negative protein to attenuate NMDAR-mediated excitotoxicity. Moreover, we identified a novel short form N-terminal domain-containing Homer2, named Homer2e, which was induced by apoptotic stimulation such as ischemic brain injury. Our study suggests that the long and short forms of Homer2 are involved in apoptosis of CGCs.


Assuntos
Apoptose , Cerebelo/citologia , Proteínas de Arcabouço Homer/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Isquemia Encefálica/patologia , Proteínas de Arcabouço Homer/química , Proteínas de Arcabouço Homer/genética , Camundongos Endogâmicos ICR , Modelos Biológicos , N-Metilaspartato/metabolismo , Domínios Proteicos , Isoformas de Proteínas/metabolismo
3.
Sci Rep ; 11(1): 8656, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883618

RESUMO

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Condicionamento Clássico , Aprendizagem por Discriminação , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Frações Subcelulares/metabolismo
4.
Mol Brain ; 14(1): 52, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712038

RESUMO

The HapMap Project is a major international research effort to construct a resource to facilitate the discovery of relationships between human genetic variations and health and disease. The Ser19Stop single nucleotide polymorphism (SNP) of human phytanoyl-CoA hydroxylase-interacting protein-like (PHYHIPL) gene was detected in HapMap project and registered in the dbSNP. PHYHIPL gene expression is altered in global ischemia and glioblastoma multiforme. However, the function of PHYHIPL is unknown. We generated PHYHIPL Ser19Stop knock-in mice and found that PHYHIPL impacts the morphology of cerebellar Purkinje cells (PCs), the innervation of climbing fibers to PCs, the inhibitory inputs to PCs from molecular layer interneurons, and motor learning ability. Thus, the Ser19Stop SNP of the PHYHIPL gene may be associated with cerebellum-related diseases.


Assuntos
Cerebelo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polimorfismo de Nucleotídeo Único , Células de Purkinje/ultraestrutura , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Forma Celular , Códon de Terminação , Feminino , Técnicas de Introdução de Genes , Projeto HapMap , Humanos , Interneurônios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Fibras Nervosas/fisiologia , Células de Purkinje/metabolismo , Teste de Desempenho do Rota-Rod , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201232

RESUMO

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Axônios/metabolismo , Transtornos dos Movimentos/etiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Células de Purkinje/metabolismo , Tremor/etiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Potenciais de Ação , Animais , Dependovirus/genética , Eletroencefalografia , Eletromiografia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Genótipo , Movimentos da Cabeça , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Técnicas de Patch-Clamp , Transporte Proteico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Tremor/metabolismo , Tremor/fisiopatologia
6.
Neurosci Lett ; 617: 232-5, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26917099

RESUMO

The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Septinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
7.
J Biol Chem ; 286(24): 21478-87, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21527636

RESUMO

In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica , Neurotrofina 3/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Masculino , Camundongos , Modelos Neurológicos , Fotoperíodo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo
8.
Neurochem Res ; 36(7): 1241-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21243430

RESUMO

The cerebellar cortical circuit of mammals develops via a series of magnificent cellular events in the postnatal stage of development to accomplish the formation of functional circuit architectures. The contribution of genetic factors is thought to be crucial to cerebellar development. Therefore, it is essential to analyze the underlying transcriptome during development to understand the genetic blueprint of the cerebellar cortical circuit. In this review, we introduce the profiling of large numbers of spatiotemporal gene expression data obtained by developmental time-series microarray analyses and in situ hybridization cellular mRNA mapping, and the creation of a neuroinformatics database called the Cerebellar Development Transcriptome Database. Using this database, we have identified thousands of genes that are classified into various functional categories and are expressed coincidently with related cellular developmental stages. We have also suggested the molecular mechanisms of cerebellar development by functional characterization of several identified genes (Cupidin, p130Cas, very-KIND, CAPS2) responsible for distinct cellular events of developing cerebellar granule cells. Taken together, the gene expression profiling during the cerebellar development demonstrates that the development of cerebellar cortical circuit is attributed to the complex but orchestrated transcriptome.


Assuntos
Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte/genética , Clonagem Molecular , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/fisiologia , Bases de Dados Genéticas , Exonucleases , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas de Arcabouço Homer , Glicoproteínas de Membrana/fisiologia , Camundongos , Proteínas da Mielina/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Tirosina Quinases/fisiologia , Células de Purkinje/fisiologia , Sinapses/genética , Fatores de Transcrição/genética
9.
J Biol Chem ; 285(49): 38710-9, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20921225

RESUMO

Ca(2+)-dependent activator protein for secretion (CAPS) regulates exocytosis of catecholamine- or neuropeptide-containing dense-core vesicles (DCVs) at secretion sites, such as nerve terminals. However, large amounts of CAPS protein are localized in the cell soma, and the role of somal CAPS protein remains unclear. The present study shows that somal CAPS1 plays an important role in DCV trafficking in the trans-Golgi network. The anti-CAPS1 antibody appeared to pull down membrane fractions, including many Golgi-associated proteins, such as ADP-ribosylation factor (ARF) small GTPases. Biochemical analyses of the protein-protein interaction showed that CAPS1 interacted specifically with the class II ARF4/ARF5, but not with other classes of ARFs, via the pleckstrin homology domain in a GDP-bound ARF form-specific manner. The pleckstrin homology domain of CAPS1 showed high affinity for the Golgi membrane, thereby recruiting ARF4/ARF5 to the Golgi complex. Knockdown of either CAPS1 or ARF4/ARF5 expression caused accumulation of chromogranin, a DCV marker protein, in the Golgi, thereby reducing its DCV secretion. In addition, the overexpression of CAPS1 binding-deficient ARF5 mutants induced aberrant chromogranin accumulation in the Golgi and consequently reduced its DCV secretion. These findings implicate a functional role for CAPS1 protein in the soma, a major subcellular localization site of CAPS1 in many cell types, in regulating DCV trafficking in the trans-Golgi network; this activity occurs via protein-protein interaction with ARF4/ARF5 in a GDP-dependent manner.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Complexo de Golgi/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Transporte Biológico/fisiologia , Proteínas de Ligação ao Cálcio/genética , Técnicas de Silenciamento de Genes , Complexo de Golgi/genética , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Camundongos , Células PC12 , Estrutura Terciária de Proteína , Ratos , Vesículas Secretórias/genética , Proteínas de Transporte Vesicular/genética
10.
J Neurosci ; 24(1): 43-52, 2004 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-14715936

RESUMO

Neurotrophins are key modulators of various neuronal functions, including differentiation, survival, and synaptic plasticity, but the molecules that regulate their secretion are poorly understood. We isolated a clone that is predominantly expressed in granule cells of postnatally developing mouse cerebellum, which turned out to be a paralog of CAPS (Ca2+-dependent activator protein for secretion), and named CAPS2. CAPS2 is enriched on vesicular structures of presynaptic parallel fiber terminals of granule cells connecting postsynaptic spines of Purkinje cell dendrites. Vesicle factions affinity-purified by the CAPS2 antibody from mouse cerebella contained significant amounts of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and chromogranin B but not marker proteins for synaptic vesicle synaptophysin and synaptotagmin. In cerebellar primary cultures, punctate CAPS2 immunoreactivities are primarily colocalized with those of NT-3 and BDNF and near those of a postsynaptic marker, postsynaptic density-95, around dendritic arborization of Purkinje cells. Exogenously expressed CAPS2 enhanced release of exogenous NT-3 and BDNF from PC12 cells and endogenous NT-3 from cultured granule cells in a depolarization-dependent manner. Moreover, the overexpression of CAPS2 in granule cells promotes the survival of Purkinje cells in cerebellar cultures. Thus, we suggest that CAPS2 mediates the depolarization-dependent release of NT-3 and BDNF from granule cells, leading to regulation in cell differentiation and survival during cerebellar development.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cerebelo/crescimento & desenvolvimento , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Vesículas Secretórias/química , Sequência de Aminoácidos , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Exocitose , Humanos , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Fatores de Crescimento Neural/análise , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Terminações Pré-Sinápticas/química , Células de Purkinje/citologia , Células de Purkinje/metabolismo , RNA Mensageiro/análise , Ratos , Alinhamento de Sequência
11.
J Insect Physiol ; 48(5): 565-570, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12770084

RESUMO

Amiloride is known to inhibit the taste response of vertebrates to salt by blocking the amiloride-sensitive sodium channel. In this study, we investigated electrophysiologically the effect of amiloride on the taste response of the fleshfly Boettcherisca peregrina. When 0.5 mM amiloride was included in taste solutions, the response of the salt receptor cell (salt response) to sodium chloride (NaCl) was not depressed but those of the sugar receptor cell (sugar responses) to sucrose, glucose, fructose, L-valine (L-Val) and L-phenylalanine (L-Phe) were strongly depressed. An inhibitory effect of amiloride on the concentration-response relationship for both sucrose and L-Phe was clearly revealed, but not at high concentrations of sucrose. After pretreatment of a chemosensory seta with 0.15 mM amiloride for 10 min, the salt response to NaCl was not affected. On the other hand, the sugar responses to sucrose, fructose, L-Val and L-Phe were depressed just after amiloride pretreatment. The sugar response to adenosine 5'-diphosphate (ADP) mixed with 0.5 mM amiloride was not depressed, but the response to ADP alone was depressed after amiloride pretreatment. It was therefore observed that amiloride depressed the responses to all stimulants that react with each of the receptor sites of the sugar receptor cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA