Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16817, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207326

RESUMO

Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Antígenos Virais , Doença Crônica , Epitopos , Humanos , Pandemias , SARS-CoV-2
2.
Commun Med (Lond) ; 2: 48, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603273

RESUMO

Background: Immunotherapies, including cancer vaccines and immune checkpoint inhibitors have transformed the management of many cancers. However, a large number of patients show resistance to these immunotherapies and current research has provided limited findings for predicting response to precision immunotherapy treatments. Methods: Here, we applied the next generation phage display mimotope variation analysis (MVA) to profile antibody response and dissect the role of humoral immunity in targeted cancer therapies, namely anti-tumor dendritic cell vaccine (MelCancerVac®) and immunotherapy with anti-PD-1 monoclonal antibodies (pembrolizumab). Results: Analysis of the antibody immune response led to the characterization of epitopes that were linked to melanoma-associated and cancer-testis antigens (CTA) whose antibody response was induced upon MelCancerVac® treatments of lung cancer. Several of these epitopes aligned to antigens with strong immune response in patients with unresectable metastatic melanoma receiving anti-PD-1 therapy. Conclusions: This study provides insights into the differences and similarities in tumor-specific immunogenicity related to targeted immune treatments. The antibody epitopes as biomarkers reflect melanoma-associated features of immune response, and also provide insights into the molecular pathways contributing to the pathogenesis of cancer. Concluding, antibody epitope response can be useful in predicting anti-cancer immunity elicited by immunotherapy.

3.
EBioMedicine ; 29: 47-59, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29449194

RESUMO

BACKGROUND: Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS: Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS: Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION: We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.


Assuntos
Autoanticorpos/imunologia , Autoimunidade , Narcolepsia/diagnóstico , Narcolepsia/etiologia , Receptores de Prostaglandina/imunologia , Vacinas/efeitos adversos , Adolescente , Adulto , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Biomarcadores , Criança , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/efeitos adversos , Influenza Humana/complicações , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Masculino , Neurônios/imunologia , Neurônios/metabolismo , Peptídeos/química , Peptídeos/imunologia , Prognóstico , Receptores de Prostaglandina/química , Adulto Jovem
4.
Sci Rep ; 6: 30852, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499390

RESUMO

Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression.


Assuntos
Reprogramação Celular , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Processamento Alternativo , Caderinas/metabolismo , Diferenciação Celular , Linhagem Celular , Movimento Celular , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Melanócitos/citologia , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Microscopia de Fluorescência , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/antagonistas & inibidores , Fator de Transcrição TFIID/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Biochim Biophys Acta ; 1862(1): 46-55, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459048

RESUMO

High activity of GLI family zinc finger protein 2 (GLI2) promotes tumor progression. Removal of the repressor domain at the N terminus (GLI2∆N) by recombinant methods converts GLI2 into a powerful transcriptional activator. However, molecular mechanisms leading to the formation of GLI2∆N activator proteins have not been established. Herein we report for the first time that the functional activities of GLI2 are parted into different protein isoforms by alternative promoter usage, selection of alternative splicing, transcription initiation and termination sites. Functional studies using melanoma cells revealed that transcriptional regulation of GLI2 is TGFbeta-dependent and supports the predominant production of GLI2∆N and C-terminally truncated GLI2 (GLI2∆C) isoforms in cells with high migratory and invasive phenotype. Taken together, these results highlight the role of transcription and RNA processing as major processes in the regulation of GLI2 activity with severe impacts in cancer development.


Assuntos
Processamento Alternativo , Melanoma/genética , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , RNA/genética , Ativação Transcricional , Proteína Gli2 com Dedos de Zinco/genética , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Melanoma/patologia , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo
6.
J Neurochem ; 109(3): 807-18, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19245665

RESUMO

The SWItch/Sucrose NonFermentable, a nucleosome remodeling complex (SWI/SNF) chromatin-remodelling complexes act upon the nucleosomal structure and regulate transcription, replication, repair of chromatin and splicing. In this study, we present evidence that human, mouse and rat genes encoding one of the SWI/SNF complex subunits, BAF57, undergo neuron-specific splicing of exons II, III and IV. Alternative splicing yields in at least three isoforms of BAF57 protein that have truncated N-termini (N-BAF57s). The transcripts encoding N-BAF57 isoforms are predominantly expressed in the nervous system. The biochemical fractionation data supported by the results of the co-immunoprecipitation analysis show that N-BAF57 isoforms associate into protein complexes together with Brg1, Brm, BAF155 and BAF170. Transient over-expression of N-BAF57 isoforms in non-neural cells affects the level of expression of certain neuron-restrictive silencer element-containing genes. Together these data suggest that neuronal isoforms of BAF57 contribute to functional SWI/SNF complexes regulating neurogenesis.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo , Animais , Encéfalo/citologia , Células Cultivadas , DNA Helicases/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação/métodos , Melanoma , Camundongos , Neuroblastoma , Neurônios/ultraestrutura , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA