Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(24): 16792-16806, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682185

RESUMO

Peripheral T-cell lymphoma (PTCL) is a rare, aggressive, heterogeneous, Non-Hodgkin's lymphoma with poor prognosis and inadequate response to current therapies. Recent sequencing studies indicate a prevalence of activating mutations in the JAK/STAT signaling pathway. Oncogenic mutations in STAT5B, observed in approximately one third of cases of multiple different PTCL subtypes, correlate with inferior patient outcomes. Therefore, interest in the development of therapeutic strategies for targeting STAT5 in PTCL is warranted. In this study, we show that the drug pimozide inhibits STAT5 in PTCL, leading to apoptotic cell death by means of the TRAIL/DR4 dependent extrinsic apoptotic pathway. Pimozide induced PTCL cell death is caspase 8 dependent, increases the expression of the TRAIL receptor, DR4, on the surface of pre-apoptotic PTCL cells, and enhances TRAIL induced apoptosis in a TRAIL dependent manner. In parallel, we show that mRNA and protein levels of intrinsic pathway BCL-2 family members and mitochondrial membrane potential remain unaffected by STAT5 knockdown and/or inhibition. In primary PTCL patient samples, pimozide inhibits STAT5 activation and induces apoptosis. Our data support a role for STAT5 inhibition in PTCL and implicate potential utility for inhibition of STAT5 and activation of the extrinsic apoptotic pathway as combination therapy in PTCL.

2.
J Immunother ; 41(2): 53-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29271784

RESUMO

Tumor-specific CD8 T cells often fail to elicit effective antitumor immune responses due to an inability to expand into a substantial effector population and persist long-term in vivo. Using an adoptive transfer model of cancer immunotherapy, we demonstrate that constitutive eomesodermin (Eomes) expression in tumor-specific CD8 T cells improves tumor rejection and survival. The increase in tumor rejection was associated with an increased number and persistence of CD8 T cells in lymphoid tissues during acute tumor rejection, tumor regrowth, and in mice that remained tumor-free. Constitutive Eomes expression increased expression of CD25, and this was associated with enhanced interleukin-2 responsiveness and tumor-specific CD8 T-cell proliferation. Moreover, constitutive Eomes expression improved cell survival. Taken together, our data suggest that constitutive Eomes expression enhances CD8 T-cell proliferation and survival, in part through the enhancement of interleukin-2 responsiveness through CD25 induction.


Assuntos
Transferência Adotiva , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas com Domínio T/genética , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunoterapia Adotiva , Interferon gama/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/mortalidade , Neoplasias/terapia , Proteínas com Domínio T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Exp Hematol ; 44(3): 194-206.e17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607595

RESUMO

Differentiation of hematopoietic stem-progenitor cells (HSPCs) into mature blood lineages results from the translation of extracellular signals into changes in the expression levels of transcription factors controlling cell fate decisions. Multiple transcription factor families are known to be involved in hematopoiesis. Although the T-box transcription factor family is known to be involved in the differentiation of multiple tissues, and expression of T-bet, a T-box family transcription factor, has been observed in HSPCs, T-box family transcription factors do not have a described role in HSPC differentiation. In the current study, we address the functional consequences of T-bet expression in mouse HSPCs. T-bet protein levels differed among HSPC subsets, with highest levels observed in megakaryo-erythroid progenitor cells (MEPs), the common precursor to megakaryocytes and erythrocytes. HSPCs from T-bet-deficient mice exhibited a defect in megakaryocytic differentiation when cultured in the presence of thrombopoietin. In contrast, erythroid differentiation in culture in the presence of erythropoietin was not substantially altered in T-bet-deficient HSPCs. Differences observed with respect to megakaryocyte number and maturity, as assessed by level of expression of CD41 and CD61, and megakaryocyte ploidy, in T-bet-deficient HSPCs were not associated with altered proliferation or survival in culture. Gene expression micro-array analysis of MEPs from T-bet-deficient mice exhibited diminished expression of multiple genes associated with the megakaryocyte lineage. These data advance our understanding of the transcriptional regulation of megakaryopoiesis by supporting a new role for T-bet in the differentiation of MEPs into megakaryocytes.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Proteínas com Domínio T/deficiência , Animais , Sobrevivência Celular , Eritrócitos/citologia , Eritrócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Integrina beta3/biossíntese , Integrina beta3/genética , Megacariócitos/citologia , Camundongos , Camundongos Mutantes , Glicoproteína IIb da Membrana de Plaquetas/biossíntese , Glicoproteína IIb da Membrana de Plaquetas/genética
4.
PLoS One ; 10(11): e0141906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536348

RESUMO

Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Cadeias gama de Imunoglobulina/genética , Linfoma de Células T Periférico/genética , Mutação/genética , Proteínas Supressoras de Tumor/genética , Algoritmos , Exoma/genética , Feminino , Citometria de Fluxo , Humanos , Masculino
5.
Oncoimmunology ; 3(1): e27680, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790793

RESUMO

CD8+ T cells in progressing tumors frequently fail to mount an effective antitumor response often in association with the expression of inhibitory receptors, including programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (Lag3). Using a lymphoma tumor model, we demonstrate that tumor-infiltrating CD8+ T cells from growing tumors co-express inhibitory receptors and co-stimulatory receptors, including 4-1BB (TNFRSF9) as well as high levels of 2 transcription factors, Eomesodermin (Eomes) and T-bet (Tbx21), critical determinants of CD8+ T cell fate. Immunotherapy with an agonistic anti-4-1-BB antibody altered the ratio of Eomes to T-bet expression in tumor-infiltrating CD8+ T cells by increasing Eomes and decreasing T-bet expression. 4-1BB-agonist immunotherapy was also associated with downregulated expression of the inhibitory receptors PD-1 and Lag3 on tumor-infiltrating CD8+ T cells, a molecular phenotype associated with subsequent attenuation of tumor growth. Furthermore, 4-1BB-agonist immunotherapy failed to effect tumor progression in mice with Eomes deficient T cells. However, upon resumption of tumor growth, tumor-infiltrating CD8+ T cells from treated animals continued to express high levels of Eomes as well as elevated levels of the inhibitory receptors PD-1 and Lag3. Our data suggest that tumor-infiltrating CD8+ T cells are poised between activation and inhibition as dictated by expression of both co-stimulatory receptors and inhibitory receptors and demonstrate that T cell expression of Eomes is necessary, but not sufficient, for efficacious 4-1BB-agonist-mediated immunotherapy.

6.
ScientificWorldJournal ; 2013: 493689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23476138

RESUMO

Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.


Assuntos
Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fenótipo , Neoplasias da Próstata/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Adesões Focais/genética , Adesões Focais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Receptores de Hialuronatos/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Fibras de Estresse/genética , Fibras de Estresse/metabolismo
7.
J Biol Chem ; 285(39): 29911-24, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20650888

RESUMO

The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be involved in the initial and maturation phases of sealing ring formation, respectively. siRNA to cortactin inhibits this maturation process but not the formation of actin aggregates. Osteoclasts treated as above but with TNF-α demonstrated very similar effects as observed with RANKL. Osteoclasts treated with a neutralizing antibody to TNF-α displayed podosome-like structures in the entire subsurface and at the periphery of osteoclast. It is possible that TNF-α and RANKL-mediated signaling may play a role in the early phase of sealing ring configuration (i.e. either in the disassembly of podosomes or formation of actin aggregates). Furthermore, osteoclasts treated with alendronate or αv reduced the formation of the sealing ring but not actin aggregates. The present study demonstrates a novel mechanistic link between L-plastin and cortactin in sealing ring formation. These results suggest that actin aggregates formed by L-plastin independent of integrin signaling function as a core in assembling signaling molecules (integrin αvß3, Src, cortactin, etc.) involved in the maturation process.


Assuntos
Reabsorção Óssea/metabolismo , Cortactina/metabolismo , Citoesqueleto/metabolismo , Osteoclastos/metabolismo , Fosfoproteínas/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Reabsorção Óssea/genética , Células Cultivadas , Cortactina/antagonistas & inibidores , Cortactina/genética , Proteínas do Citoesqueleto , Citoesqueleto/genética , Integrinas/genética , Integrinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Proteínas dos Microfilamentos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Ligante RANK , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA