Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573669

RESUMO

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Assuntos
Estado Terminal , Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Austrália , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Programas Nacionais de Saúde , Estudos Prospectivos , Fatores de Tempo
2.
Am J Hum Genet ; 106(6): 779-792, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413283

RESUMO

The evolutionarily conserved hedgehog (Hh) pathway is essential for organogenesis and plays critical roles in postnatal tissue maintenance and renewal. A unique feature of the vertebrate Hh pathway is that signal transduction requires the primary cilium (PC) where major pathway components are dynamically enriched. These factors include smoothened (SMO) and patched, which constitute the core reception system for sonic hedgehog (SHH) as well as GLI transcription factors, the key mediators of the pathway. Here, we report bi-allelic loss-of-function variations in SMO in seven individuals from five independent families; these variations cause a wide phenotypic spectrum of developmental anomalies affecting the brain (hypothalamic hamartoma and microcephaly), heart (atrioventricular septal defect), skeleton (postaxial polydactyly, narrow chest, and shortening of long bones), and enteric nervous system (aganglionosis). Cells derived from affected individuals showed normal ciliogenesis but severely altered Hh-signal transduction as a result of either altered PC trafficking or abnormal activation of the pathway downstream of SMO. In addition, Hh-independent GLI2 accumulation at the PC tip in cells from the affected individuals suggests a potential function of SMO in regulating basal ciliary trafficking of GLI2 when the pathway is off. Thus, loss of SMO function results in abnormal PC dynamics of key components of the Hh signaling pathway and leads to a large continuum of malformations in humans.


Assuntos
Alelos , Deficiências do Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Sequência de Bases , Criança , Pré-Escolar , Cílios/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Neoplasias/genética , Proteínas do Tecido Nervoso , Proteínas Nucleares , Linhagem , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
3.
Am J Hum Genet ; 106(4): 467-483, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32220291

RESUMO

The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.


Assuntos
Adenosina Desaminase/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Alelos , Processamento Alternativo/genética , Criança , Pré-Escolar , Células HEK293 , Humanos , Masculino , Splicing de RNA/genética
4.
Hum Mutat ; 40(7): 886-892, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924587

RESUMO

Premature ovarian insufficiency involves amenorrhea and elevated follicle-stimulating hormone before age 40, and its genetic basis is poorly understood. Here, we study 13 premature ovarian insufficiency (POI) patients using whole-exome sequencing. We identify PREPL and TP63 causative variants, and variants in other potentially novel POI genes. PREPL deficiency is a known cause of syndromic POI, matching the patients' phenotype. A role for TP63 in ovarian biology has previously been proposed but variants have been described in multiorgan syndromes, and not isolated POI. One patient with isolated POI harbored a de novo nonsense TP63 variant in the terminal exon and an unrelated patient had a different nonsense variant in the same exon. These variants interfere with the repression domain while leaving the activation domain intact. We expand the phenotypic spectrum of TP63-related disorders, provide a new genotype:phenotype correlation for TP63 and identify a new genetic cause of isolated POI.


Assuntos
Códon sem Sentido , Insuficiência Ovariana Primária/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Feminino , Predisposição Genética para Doença , Humanos , Linhagem , Prolil Oligopeptidases , Domínios Proteicos , Serina Endopeptidases/genética , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/química , Sequenciamento do Exoma/métodos
5.
Genet Med ; 21(4): 1021-1026, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30293988

RESUMO

PURPOSE: RAC3 is an underexamined member of the Rho GTPase gene family that is expressed in the developing brain and linked to key cellular functions. De novo missense variants in the homolog RAC1 were recently associated with developmental disorders. In the RAC subfamily, transforming missense changes at certain shared residues have been observed in human cancers and previously characterized in experimental studies. The purpose of this study was to determine whether constitutional dysregulation of RAC3 is associated with human disease. METHODS: We discovered a RAC3 variant in the index case using genome sequencing, and searched for additional variants using international data-sharing initiatives. Functional effects of the variants were assessed using a multifaceted approach generalizable to most clinical laboratory settings. RESULTS: We rapidly identified five individuals with de novo monoallelic missense variants in RAC3, including one recurrent change. Every participant had severe intellectual disability and brain malformations. In silico protein modeling, and prior in vivo and in situ experiments, supported a transforming effect for each of the three different RAC3 variants. All variants were observed in databases of somatic variation in cancer. CONCLUSIONS: Missense variants in RAC3 cause a novel brain disorder, likely through a mechanism of constitutive protein activation.


Assuntos
Predisposição Genética para Doença , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas rac de Ligação ao GTP/genética , Adulto , Pré-Escolar , GTP Fosfo-Hidrolases/genética , Humanos , Recém-Nascido , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA