Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247932

RESUMO

Cough-based diagnosis for respiratory diseases (RDs) using artificial intelligence (AI) has attracted considerable attention, yet many existing studies overlook confounding variables in their predictive models. These variables can distort the relationship between cough recordings (input data) and RD status (output variable), leading to biased associations and unrealistic model performance. To address this gap, we propose the Bias-Free Network (RBF-Net), an end-to-end solution that effectively mitigates the impact of confounders in the training data distribution. RBF-Net ensures accurate and unbiased RD diagnosis features, emphasizing its relevance by incorporating a COVID-19 dataset in this study. This approach aims to enhance the reliability of AI-based RD diagnosis models by navigating the challenges posed by confounding variables. A hybrid of a Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is proposed for the feature encoder module of RBF-Net. An additional bias predictor is incorporated in the classification scheme to formulate a conditional Generative Adversarial Network (c-GAN) that helps in decorrelating the impact of confounding variables from RD prediction. The merit of RBF-Net is demonstrated by comparing classification performance with a State-of-The-Art (SoTA) Deep Learning (DL) model (CNN-LSTM) after training on different unbalanced COVID-19 data sets, created by using a large-scale proprietary cough data set. RBF-Net proved its robustness against extremely biased training scenarios by achieving test set accuracies of 84.1%, 84.6%, and 80.5% for the following confounding variables-gender, age, and smoking status, respectively. RBF-Net outperforms the CNN-LSTM model test set accuracies by 5.5%, 7.7%, and 8.2%, respectively.

2.
Biomed Eng Online ; 19(1): 31, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408879

RESUMO

BACKGROUND: Coarctation of the aorta is a common form of critical congenital heart disease that remains challenging to diagnose prior to clinical deterioration. Despite current screening methods, infants with coarctation may present with life-threatening cardiogenic shock requiring urgent hospitalization and intervention. We sought to improve critical congenital heart disease screening by using a novel pulse oximetry waveform analysis, specifically focused on detection of coarctation of the aorta. METHODS AND RESULTS: Over a 2-year period, we obtained pulse oximetry waveform data on 18 neonates with coarctation of the aorta and 18 age-matched controls hospitalized in the cardiac intensive care unit at Children's Healthcare of Atlanta. Patients with coarctation were receiving prostaglandin E1 and had a patent ductus arteriosus. By analyzing discrete features in the waveforms, we identified statistically significant differences in the maximum rate of fall between patients with and without coarctation. This was accentuated when comparing the difference between the upper and lower extremities, with the lower extremities having a shallow slope angle when a coarctation was present (p-value 0.001). Postoperatively, there were still differences in the maximum rate of fall between the repaired coarctation patients and controls; however, these differences normalized when compared with the same individual's upper vs. lower extremities. Coarctation patients compared to themselves (preoperatively and postoperatively), demonstrated waveform differences between upper and lower extremities that were significantly reduced after successful surgery (p-value 0.028). This screening algorithm had an accuracy of detection of 72% with 0.61 sensitivity and 0.94 specificity. CONCLUSIONS: We were able to identify specific features in pulse oximetry waveforms that were able to accurately identify patients with coarctation and further demonstrated that these changes normalized after surgical repair. Pulse oximetry screening for congenital heart disease in neonates may thus be improved by including waveform analysis, aiming to identify coarctation of the aorta prior to critical illness. Further large-scale testing is required to validate this screening model among patients in a newborn nursery setting who are low risk for having coarctation.


Assuntos
Coartação Aórtica/diagnóstico , Oximetria , Processamento de Sinais Assistido por Computador , Coartação Aórtica/cirurgia , Feminino , Humanos , Masculino , Período Pós-Operatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA