Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Dalton Trans ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028324

RESUMO

The hyphenation of HPLC with its high separation ability and ICP-MS with its excellent sensitivity, allows the analysis of Pt drugs in biological samples at the low nanomolar concentration levels. On the other hand, LC-MS provides molecular structural confirmation for each species. Using a combination of these methods, we have investigated the speciation of the photoactive anticancer complex diazido Pt(IV) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] (FM-190) in aqueous solution and biofluids at single-digit nanomolar concentrations before and after irradiation. FM-190 displays high stability in human blood plasma in the dark at 37 °C. Interestingly, the polyhydroxido species [{PtIV(py)2(OH)4} + Na]+ and [{PtIV(py)2(N3)(OH)3} + Na]+ resulting from the replacement of azido ligands, as determined by LC-MS, were the major products after photoirradiation of FM-190 with blue light (463 nm). This finding suggests that such photosubstituted Pt(IV) tri- and tetra-hydroxido species could play important roles in the biological activity of this anticancer complex. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations show that these Pt(IV) species arising from FM-190 in aqueous media can be formed directly from a singlet excited state. The results highlight how speciation analysis (metallomics) can shed light on photoactivation pathways for FM-190 and formation of potential excited-state pharmacophores. The ability to detect and identify photoproducts at physiologically-relevant concentrations in cells and tissues will be important for preclinical development studies of this class of photoactivatable platinum drugs.

2.
Angew Chem Int Ed Engl ; 63(23): e202400476, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38656762

RESUMO

The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(µ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.


Assuntos
Antineoplásicos , Irídio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Platina , Irídio/química , Irídio/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Platina/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos
3.
Chem Sci ; 15(11): 4121-4134, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487220

RESUMO

Photoactive prodrugs offer potential for spatially-selective antitumour activity with minimal effects on normal tissues. Excited-state chemistry can induce novel effects on biochemical pathways and combat resistance to conventional drugs. Photoactive metal complexes in particular, have a rich and relatively unexplored photochemistry, especially an ability to undergo facile intersystem crossing and populate triplet states. We have conjugated the photoactive octahedral Pt(iv) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] to ferrocene to introduce novel features into a candidate photochemotherapeutic drug. The X-ray crystal structure of the conjugate Pt-Fe confirmed the axial coordination of a ferrocene carboxylate, with Pt(iv) and Fe(ii) 6.07 Å apart. The conjugation of ferrocene red-shifted the absorption spectrum and ferrocene behaves as a light antenna allowing charge transfer from iron to platinum, promoting the photoactivation of Pt-Fe with light of longer wavelength. Cancer cellular accumulation is enhanced, and generation of reactive species is catalysed after photoirradiation, introducing ferroptosis as a contribution towards the cell-death mechanism. TDDFT calculations were performed to shed light on the behaviour of Pt-Fe when it is irradiated. Intersystem spin-crossing allows the formation of triplet states centred on both metal atoms. The dissociative nature of triplet states confirms that they can be involved in ligand detachment due to irradiation. The Pt(ii) photoproducts mainly retain the trans-{Pt(py)2}2+fragment. Visible light irradiation gives rise to micromolar activity for Pt-Fe towards ovarian, lung, prostate and bladder cancer cells under both normoxia and hypoxia, and some photoproducts appear to retain Pt(iv)-Fe(ii) conjugation.

4.
Inorg Chem ; 62(50): 20745-20753, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37643591

RESUMO

A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.


Assuntos
Compostos Férricos , Radioisótopos de Gálio , Animais , Humanos , Camundongos , Distribuição Tecidual , Medicina de Precisão , Tomografia por Emissão de Pósitrons , Fototerapia , Linhagem Celular Tumoral , Zircônio
5.
J Biol Inorg Chem ; 28(3): 345-353, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36884092

RESUMO

Synthetic anticancer catalysts offer potential for low-dose therapy and the targeting of biochemical pathways in novel ways. Chiral organo-osmium complexes, for example, can catalyse the asymmetric transfer hydrogenation of pyruvate, a key substrate for energy generation, in cells. However, small-molecule synthetic catalysts are readily poisoned and there is a need to optimise their activity before this occurs, or to avoid this occurring. We show that the activity of the synthetic organometallic redox catalyst [Os(p-cymene)(TsDPEN)] (1), which can reduce pyruvate to un-natural D-lactate in MCF7 breast cancer cells using formate as a hydride source, is significantly increased in combination with the monocarboxylate transporter (MCT) inhibitor AZD3965. AZD3965, a drug currently in clinical trials, also significantly lowers the intracellular level of glutathione and increases mitochondrial metabolism. These synergistic mechanisms of reductive stress induced by 1, blockade of lactate efflux, and oxidative stress induced by AZD3965 provide a strategy for low-dose combination therapy with novel mechanisms of action.


Assuntos
Ácido Láctico , Neoplasias , Ácido Láctico/química , Ácido Láctico/farmacologia , Piruvatos/química , Piruvatos/farmacologia , Catálise
6.
Adv Mater ; 35(19): e2210363, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787500

RESUMO

Hypoxia represents a remarkably exploitable target for cancer therapy, is encountered only in solid human tumors, and is highly associated with cancer resistance and recurrence. Here, a hypoxia-activated mitochondria-accumulated Ru(II) polypyridyl prodrug functionalized with conjugated azo (Az) and nitrogen mustard (NM) functionalities, RuAzNM, is reported. This prodrug has multimodal theranostic properties toward hypoxic cancer cells. Reduction of the azo group in hypoxic cell microenvironments gives rise to the generation of two primary amine products, a free aniline mustard, and the polypyridyl RuNH2 complex. Thus, the aniline mustard triggers generation of reactive oxygen species (ROS) and mtDNA crosslinking. Meanwhile, the resultant biologically benign phosphorescent RuNH2 gives rise to a diagnostic signal and signals activation of the phototherapy. This multimodal therapeutic effect eventually elevates ROS levels, depletes reduced nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), and induces mitochondrial membrane damage, mtDNA damage, and ultimately cell apoptosis. This unique strategy allows controlled multimodal theranostics to be realized in hypoxic cells and multicellular spheroids, making RuAzNM a highly selective and effective cancer-cell-selective theranostic agent (IC50  = 2.3 µm for hypoxic HepG2 cancer cells vs 58.2 µm for normoxic THL-3 normal cells). This is the first report of a metal-based compound developed as a multimodal theranostic agent for hypoxia.


Assuntos
Mostarda de Anilina , Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Hipóxia/metabolismo , DNA Mitocondrial , Oxirredução , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
7.
J Biol Inorg Chem ; 27(8): 695-704, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153767

RESUMO

Determination of the toxicity of compounds toward cancer cells is a frequent procedure in drug discovery. For metal complexes, which are often reactive prodrugs, care has to be taken to consider reactions with components of the cell culture medium that might change the speciation of the metal complex before it is taken up by the cells. Here, we consider possible reactions between the clinical platinum drugs cisplatin and oxaliplatin with penicillin G, an antibiotic added routinely to cell culture media to prevent bacterial contamination. Platinum has a high affinity for ligands with sulfur donors. Penicillin G is an unstable thioether that degrades in a range of pathways. Nuclear magnetic resonance (NMR) and UV-Vis absorption spectroscopic studies show that reactions with cisplatin can occur within minutes to hours at 310 K, but more slowly with oxaliplatin. The identities of the Pt- adducts were investigated by mass spectrometry. The marked effect on cytotoxicity of co-incubation of cisplatin with penicillin G was demonstrated for the HeLa human cervical cancer cell line. These studies highlight the possibility that reactions with penicillin G might influence the cytotoxic activity of metal complexes determined in culture media.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cisplatino/farmacologia , Cisplatino/química , Oxaliplatina/farmacologia , Oxaliplatina/química , Platina/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Antineoplásicos/química , Penicilina G/farmacologia
8.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886972

RESUMO

We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N')L][PF6]2 containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 µM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Estrutura Molecular , Naftalimidas/farmacologia , Rutênio/farmacologia
9.
Dalton Trans ; 51(29): 10875-10879, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796219

RESUMO

Rationally-designed glucose-appended Ir(III) photo-catalysts ([Ir(N,C)2(N,N-Glc)]+, Ir1-Ir3) show visible light-induced catalytic NAD(P)H oxidation in aqueous solution. The highly in vivo biocompatible complex, Ir3, shows lysosome and mitochondria targeting necro-apoptotic photo-cytotoxicity against various cancer cell lines and multicellular spheroids, while remaining non-toxic in the dark.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Glucose , Humanos , Irídio/farmacologia , Mitocôndrias , Neoplasias/tratamento farmacológico
10.
Dalton Trans ; 51(11): 4447-4457, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226015

RESUMO

We have synthesized a series of novel substituted sulfonyl ethylenediamine (en) RuII arene complexes 1-8 of [(η6-arene)Ru(R1-SO2-EnBz)X], where the arene is benzene, HO(CH2)2O-phenyl or biphenyl (biph), X = Cl or I, and R1 is phenyl, 4-Me-phenyl, 4-NO2-phenyl or dansyl. The 'piano-stool' structure of complex 3, [(η6-biph)Ru(4-Me-phenyl-SO2-EnBz)I], was confirmed by X-ray crystallography. The values of their aqua adducts were determined to be high (9.1 to 9.7). Complexes 1-8 have antiproliferative activity against human A2780 ovarian, and A549 lung cancer cells with IC50 values ranging from 4.1 to >50 µM, although, remarkably, complex 7 [(η6-biph)Ru(phenyl-SO2-EnBz)Cl] was inactive towards A2780 cells, but as potent as the clinical drug cisplatin towards A549 cells. All these complexes also showed catalytic activity in transfer hydrogenation (TH) of NAD+ to NADH with sodium formate as hydride donor, with TOFs in the range of 2.5-9.7 h-1. The complexes reacted rapidly with the thiols glutathione (GSH) and N-acetyl-L-cysteine (NAC), forming dinuclear bridged complexes [(η6-biph)2Ru2(GS)3]2- or [(η6-biph)2Ru2(NAC-H)3]2-, with the liberation of the diamine ligand which was detected by LC-MS. In addition, the switching on of fluorescence for complex 8 in aqueous solution confirmed release of the chelated DsEnBz ligand in reactions with these thiols. Reactions with GSH hampered the catalytic TH of NAD+ to NADH due to the decomposition of the complexes. Co-administration to cells of complex 2 [(η6-biph)Ru(4-Me-phenyl-SO2-EnBz)Cl] with L-buthionine sulfoximine (L-BSO), an inhibitor of GSH synthesis, partially restored the anticancer activity towards A2780 ovarian cancer cells. Complex 2 caused a concentration-dependent G1 phase cell cycle arrest, and induced a significant level of reactive oxygen species (ROS) in A2780 human ovarian cancer cells. The amount of induced ROS decreased with increase in GSH concentration, perhaps due to the formation of the dinuclear Ru-SG complex.


Assuntos
Antineoplásicos/farmacologia , Cisteína/química , Compostos Organometálicos/farmacologia , Compostos de Sulfidrila/química , Antineoplásicos/síntese química , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Humanos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Rutênio/química , Rutênio/farmacologia
11.
J Am Chem Soc ; 143(48): 20224-20240, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808054

RESUMO

The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Humanos , Luz , Células PC-3 , Platina/química , Platina/efeitos da radiação , Pró-Fármacos/química , Pró-Fármacos/efeitos da radiação , Análise de Célula Única
12.
Dalton Trans ; 50(37): 12970-12981, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581369

RESUMO

We report the synthesis of the organo-osmium anticancer complex [Os(η6-p-cym)(N,N-azpy-NMe2)Br]PF6 (1) containing natural abundance 187Os (1.96%), and isotopically-enriched (98%) [187Os]-1. Complex 1 and [187Os]-1 contain a π-bonded para-cymene (p-cym), a chelated 4-(2-pyridylazo)-N,N-dimethylaniline (azpy-NMe2), and a monodentate bromide as ligands. The X-ray crystal structure of 1 confirmed its half-sandwich 'piano-stool' configuration. Complex 1 is a member of a family of potent anticancer complexes, and exhibits sub-micromolar activity against A2780 human ovarian cancer cells (IC50 = 0.40 µM). Complex [187Os]-1 was analysed by high-resolution ESI-MS, 1D 1H and 13C NMR, and 2D 1H COSY, 13C-1H HMQC, and 1H-187Os HMBC NMR spectroscopy. Couplings of 1H and 13C nuclei from the azpy/p-cym ligands to 187Os were observed with J-couplings (1J to 4J) ranging between 0.6-8.0 Hz. The 187Os chemical shift of [187Os]-1 (-4671.3 ppm, determined by 2D 1H-187Os HMBC NMR) is discussed in relation to the range of values reported for related Os(II) arene and cyclopentadienyl complexes (-2000 to -5200 ppm).


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Osmio/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Osmio/química , Neoplasias Ovarianas/tratamento farmacológico
13.
Inorg Chem ; 60(23): 17450-17461, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503331

RESUMO

Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 µM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).


Assuntos
Antineoplásicos/farmacologia , Calixarenos/farmacologia , Complexos de Coordenação/farmacologia , Osmio/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Osmio/química , Processos Fotoquímicos
14.
Chem Commun (Camb) ; 57(62): 7645-7648, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34250984

RESUMO

The novel Pt(iv) complex trans,trans-[Pt(N3)2(Py)2(OH)(OCO-(PEG)2-NHCSNH-Ph-NCS)] (Pt4) conjugates to the side chain of lysine amino acids in proteins under mild conditions. Reaction with myoglobin generated a bioconjugate that was stable in the dark, but released a Pt(iv) prodrug upon visible light irradiation. A similar procedure was used to conjugate Pt4 to the antibody trastuzumab, resulting in the first photoactivatable Pt(iv)-antibody conjugate, demonstrating potential for highly selective cancer phototherapy.

15.
Dalton Trans ; 50(30): 10593-10607, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34278398

RESUMO

Complexes trans,trans,trans-[Pt(N3)2(OH)(OCOR)(py)2] where py = pyridine and where OCOR = succinate (1); 4-oxo-4-propoxybutanoate (2) and N-methylisatoate (3) have been synthesized by derivation of trans,trans,trans-[Pt(OH)2(N3)2(py)2] (4) and characterised by NMR and EPR spectroscopy, ESI-MS and X-ray crystallography. Irradiation of 1-3 with green (517 nm) light initiated photoreduction to Pt(ii) and release of the axial ligands at a 3-fold faster rate than for 4. TD-DFT calculations showed dissociative transitions at longer wavelengths for 1 compared to 4. Complexes 1 and 2 showed greater photocytotoxicity than 4 when irradiated with 420 nm light (A2780 cell line IC50 values: 2.7 and 3.7 µM) and complex 2 was particularly active towards the cisplatin-resistant cell line A2780cis (IC50 3.7 µM). Unlike 4, complexes 1-3 were phototoxic under green light irradiation (517 nm), with minimal toxicity in the dark. A pKa(H2O) of 5.13 for the free carboxylate group was determined for 1, corresponding to an overall negative charge during biological experiments, which crucially, did not appear to impede cellular accumulation and photocytotoxicity.


Assuntos
Neoplasias Ovarianas , Linhagem Celular Tumoral , Feminino , Humanos , Compostos Organoplatínicos
16.
Chemistry ; 27(41): 10711-10716, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34046954

RESUMO

Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA , Feminino , Humanos , Luz , Compostos Organoplatínicos , Platina
17.
J Inorg Biochem ; 219: 111408, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826972

RESUMO

Reaction of dihydroartemisinin (DHA) with 4-methyl-4'-carboxy-2,2'-bipyridine yielded the new ester derivative L1. Six novel organometallic half-sandwich chlorido Rh(III) and Ir(III) complexes (1-6) containing pentamethylcyclopentadienyl, (Cp*), tetramethylphenylcyclopentadienyl (Cpxph), or tetramethylbiphenylcyclopentadienyl (Cpxbiph), and N,N-chelated bipyridyl group of L1, have been synthesized and characterized. The complexes were screened for inhibitory activity against the Plasmodium falciparum 3D7 (sensitive), Dd2 (multi-drug resistant) and NF54 late stage gametocytes (LSGNF54), the parasite strain Trichomonas vaginalis G3, as well as A2780 (human ovarian carcinoma), A549 (human alveolar adenocarcinoma), HCT116 (human colorectal carcinoma), MCF7 (human breast cancer) and PC3 (human prostate cancer) cancer cell lines. They show nanomolar antiplasmodial activity, outperforming chloroquine and artemisinin. Their activities were also comparable to dihydroartemisinin. As anticancer agents, several of the complexes showed high inhibitory effects, with Ir(III) complex 3, containing the tetramethylbiphenylcyclopentadienyl ligand, having similar IC50 values (concentration for 50% of maximum inhibition of cell growth) as the clinical drug cisplatin (1.06-9.23 µM versus 0.24-7.2 µM, respectively). Overall, the iridium complexes (1-3) are more potent compared to the rhodium derivatives (4-6), and complex 3 emerges as the most promising candidate for future studies.


Assuntos
2,2'-Dipiridil/química , Artemisininas/química , Artemisininas/farmacologia , Irídio/química , Compostos Organometálicos/química , Ródio/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Humanos , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Trichomonas vaginalis/efeitos dos fármacos
18.
Metallomics ; 13(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693931

RESUMO

The treatment of tuberculosis (TB) poses a major challenge as frontline therapeutic agents become increasingly ineffective with the emergence and spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). To combat this global health problem, new antitubercular agents with novel modes of action are needed. We have screened a close family of 17 organometallic half-sandwich Os(II) complexes [(arene)Os(phenyl-azo/imino-pyridine)(Cl/I)]+Y- containing various arenes (p-cymene, biphenyl, or terphenyl), and NMe2, F, Cl, or Br phenyl or pyridyl substituents, for activity towards Mtb in comparison with normal human lung cells (MRC5). In general, complexes with a monodentate iodido ligand were more potent than chlorido complexes, and the five most potent iodido complexes (MIC 1.25-2.5 µM) have an electron-donating Me2N or OH substituent on the phenyl ring. As expected, the counter anion Y (PF6-, Cl-, I-) had little effect on the activity. The pattern of potency of the complexes towards Mtb is similar to that towards human cells, perhaps because in both cases intracellular thiols are likely to be involved in their activation and their redox mechanism of action. The most active complex against Mtb is the p-cymene Os(II) NMe2-phenyl-azopyridine iodido complex (2), a relatively inert complex that also exhibits potent activity towards cancer cells. The uptake of Os from complex 2 by Mtb is rapid and peaks after 6 h, with temperature-dependence studies suggesting a major role for active transport. Significance to Metallomics Antimicrobial resistance is a global health problem. New advances are urgently needed in the discovery of new antibiotics with novel mechanisms of action. Half-sandwich organometallic complexes offer a versatile platform for drug design. We show that with an appropriate choice of the arene, an N,N-chelated ligand, and monodentate ligand, half-sandwich organo-osmium(II) complexes can exhibit potent activity towards Mycobacterium tuberculosis (Mtb), the leading cause of death from a single infectious agent. The patterns of activity of the 17 azo- and imino-pyridine complexes studied here towards Mtb and normal lung cells suggest a common redox mechanism of action involving intracellular thiols.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Osmio/química , Tuberculose/tratamento farmacológico , Antineoplásicos/química , Antituberculosos/química , Proliferação de Células , Humanos , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Compostos Organometálicos/química , Tuberculose/microbiologia , Células Tumorais Cultivadas
19.
Angew Chem Int Ed Engl ; 60(12): 6462-6472, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33590607

RESUMO

Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.


Assuntos
Antineoplásicos/química , Estruturas Metalorgânicas/química , Osmio/química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogenação , Estruturas Metalorgânicas/farmacologia , Conformação Molecular , Osmio/farmacologia
20.
Metallomics ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33595653

RESUMO

The organo-osmium complex [OsII(ɳ6-p-cym)(PhAzPy-NMe2)I]+ (FY26) exhibits promising in vitro antitumour activity against mouse hepatocarcinoma Hepa1-6 and other mouse or human cancer cell lines. Here, we drastically enhance water solubility of FY26 through the replacement of the PF6- counter-anion with chloride using a novel synthesis method. FY26⋅PF6 and FY26⋅Cl displayed similar in vitro cytotoxicity in two cancer cell models. We then show the moderate and late anticancer efficacy of FY26⋅PF6 and FY26⋅Cl in a subcutaneous murine hepatocarcinoma mouse model. Both efficacy and tolerability varied according to FY26 circadian dosing time in hepatocarcinoma tumour-bearing mice. Tumour and liver uptake of the drug were determined over 48 h following FY26⋅Cl administration at Zeitgeber time 6 (ZT6), when the drug is least toxic (in the middle of the light span when mice are resting). Our studies suggest the need to administer protracted low doses of FY26 at ZT6 in order to optimize its delivery schedule, for example through the use of chrono-releasing nanoparticles.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Complexos de Coordenação/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/efeitos adversos , Complexos de Coordenação/farmacocinética , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA