Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 328: 138574, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019403

RESUMO

Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 µg g-1, while the limit for soil is between 75 and 150 µg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.


Assuntos
Níquel , Poluentes do Solo , Níquel/análise , Solo , Plantas , Fotossíntese , Raízes de Plantas/química , Poluentes do Solo/análise , Biodegradação Ambiental
2.
J Environ Manage ; 265: 110522, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275244

RESUMO

Cadmium (Cd) is a toxic heavy metal with unknown biological role. Interactive effect of Enterobacter sp. MN17 and biochar was studied on the growth, physiology and antioxidant defense system of Brassica napus under Cd contaminated soil. A multi-metal tolerant endophytic bacterium, Enterobacter sp. MN17, was able to grow in tryptic soy agar (TSA) medium with up to 160, 200, 300, 700, 160 and 400 µg mL-1 of Cd, Cu, Cr, Pb, Ni and Zn, respectively. Paper and pulp waste biochar was prepared at 450 °C and applied to pots (7 kg soil) at a rate of 1% (w/w), while Cd was spiked at 80 mg kg-1 soil. Application of Enterobacter sp. MN17 and biochar, alone or combined, was found effective in the amelioration of Cd stress. Combined application of Enterobacter sp. MN17 and biochar caused the maximum appraisal in shoot and root length (52.5 and 76.5%), fresh and dry weights of shoot (77.1 and 70.7%) and root (81.2 and 57.9%), photosynthetic and transpiration rate (120.2 and 106.6%), stomatal and sub-stomatal conductance (81.3 and 75.5%), chlorophyll content and relative water content (RWC) (78.4 and 102.9%) than control. Their combined use showed a significant decrease in electrolyte leakage (EL), proline, malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPX), glutathione S transferase (GST) and superoxide dismutase (SOD) by 39.3, 39.4, 39.5, 37.0, 39.0 42.1 and 30.8%, respectively, relative to control. Likewise, the combined application of bacterial strain MN17 and biochar reduced Cd in soil by 45.6%, thereby decreasing its uptake in root and shoot by 40.1 and 38.2%, respectively in Cd contaminated soil. The application of biochar supported the maximum colonization of strain MN17 in the rhizosphere soil, root and shoot tissues. These results reflected that inoculation with Enterobacter sp. MN17 could be an effective approach to accelerate biochar-mediated remediation of Cd contaminated soil for sustainable production of crops.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio , Carvão Vegetal , Enterobacter , Estresse Oxidativo , Solo
3.
Plants (Basel) ; 9(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326023

RESUMO

Contamination of soils with heavy metals, particularly cadmium (Cd), is an increasingly alarming environmental issue around the world. Application of organic and inorganic immobilizing amendments such as biochar and gravel sand in combination with metal-tolerant microbes has the potential to minimize the bioavailability of Cd to plants. The present study was designed to identify the possible additive effects of the application of Enterobacter sp. MN17 as well as biochar and gravel sand on the reduction of Cd stress in plants and improvement of growth and nutritional quality of pea (Pisum sativum) plants through the reduction of Cd uptake. Pea seeds were surface sterilized then non-inoculated seeds and seeds inoculated with Enterobacter sp. MN17 were planted in artificially Cd-polluted soil, amended with the immobilizing agents biochar and gravel sand. Application of biochar and gravel sand alone and in combination not only improved the growth and nutritional quality of pea plants by in situ immobilization but also reduced the uptake of Cd by plant roots and its transport to shoots. However, microbial inoculation further enhanced the overall plant health as well as alleviated the toxic effects of Cd on the pea plants. These soil treatments also improved rates of photosynthesis and transpiration. The combined use of biochar and gravel sand with bacterial inoculation resulted in an increase in plant height (47%), shoot dry weight (42%), root dry weight (57%), and 100 seeds weight (49%) as compared to control plants in Cd contaminated soil. Likewise, biochemical constituents of pea seeds (protein, fat, fiber, and ash) were significantly increased up to 41%, 74%, 32%, and 72%, respectively, with the combined use of these immobilizing agents and bacterium. Overall, this study demonstrated that the combined application of biochar and gravel sand, particularly in combination with Enterobacter sp. MN17, could be an efficient strategy for the remediation of Cd contaminated soil. It could support better growth and nutritional quality of pea plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA