Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 5066167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308168

RESUMO

From the past few decades, attention towards the biological evaluation of nanoparticles (NPs) has increased due to the persistent and extensive application of NPs in various fields, including biomedical science, modern industry, magnetic resonance imaging, and the construction of sensors. Therefore, in the current study, magnetic nickel ferrite (NiFe2O4) nanoparticles (NFNPs) were synthesized and evaluated for their possible adverse effects in rabbits. The crystallinity of the synthesized NFNPs was confirmed using X-ray diffraction (XRD) technique. The saturation magnetization (46.7 emug-1) was measured using vibrating sample magnetometer (VSM) and 0.35-tesla magnetron by magnetic resonance imaging (MRI). The adverse effects of NFNPs on blood biochemistry and histoarchitecture of the liver, kidneys, spleen, brain, and heart of the rabbits were determined. A total of sixteen adult rabbits, healthy and free from any apparent infection, were blindly placed in two groups. The rabbits in group A served as control, while the rabbits in group B received a single dose (via ear vein) of NFNPs for ten days. The blood and visceral tissues were collected from each rabbit at days 5 and 10 of posttreatment. The results on blood and serum biochemistry profile indicated significant variation in hematological and serum biomarkers in NFNP-treated rabbits. The results showed an increased quantity of oxidative stress and depletion of antioxidant enzymes in treated rabbits. Various serum biochemical tests exhibited significantly higher concentrations of different liver function tests, kidney function tests, and cardiac biomarkers. Histopathologically, the liver showed congestion, edema, atrophy, and degeneration of hepatocytes. The kidneys exhibited hemorrhages, atrophy of renal tubule, degeneration, and necrosis of renal tubules, whereas coagulative necrosis, neutrophilic infiltration, and severe myocarditis were seen in different sections of the heart. The brain of the treated rabbits revealed necrosis of neurons, neuron atrophy, and microgliosis. In conclusion, the current study results indicated that the highest concentration of NPs induced adverse effects on multiple tissues of the rabbits.


Assuntos
Compostos Férricos , Nanopartículas , Animais , Compostos Férricos/farmacologia , Nanopartículas/toxicidade , Níquel/toxicidade , Estresse Oxidativo , Coelhos
2.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34908119

RESUMO

BACKGROUND: Defects in methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) expression have earlier been examined in only a few human cancers. OBJECTIVES: Multi-omics profiling of MTHFD1L as a shared biomarker in distinct subtypes of human cancers. METHODS: In the current study, for the multi-omics analysis of MTHFD1L in 24 major subtypes of human cancers, a comprehensive in silico approach was adopted to mine different open access online databases including UALCAN, Kaplan-Meier (KM) plotter, LOGpc, GEPIA, Human Protein Atlas (HPA), Gene Expression across Normal and Tumor tissue (GENT2), MEXPRESS, cBioportal, STRING, DAVID, TIMER, and Comparative Toxicogenomics Database (CTD). RESULTS: We noticed that the expression of MTHFD1L was significantly higher in all the analyzed 24 subtypes of human cancers as compared with the normal controls. Moreover, MTHDF1L overexpression was also found to be significantly associated with the reduced overall survival (OS) duration of Bladder urothelial cancer (BLCA), Head and neck cancer (HNSC), Kidney renal papillary cell carcinoma (KIRP), Lung adenocarcinoma (LUAD), and Uterine corpus endometrial carcinoma (UCEC). This implies that MTHFD1L plays a significant role in the development and progression of these cancers. We further noticed that MTHFD1L was also overexpressed in BLCA, HNSC, KIRP, LUAD, and UCEC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of MTHFD1L-associated genes in five diverse pathways. We also explored few interesting correlations between MTHFD1L expression and its promoter methylation, genetic alterations, CNVs, and between CD8+ T immune cells level. CONCLUSION: In conclusion, our results elucidated that MTHFD1L can serve as a shared diagnostic and prognostic biomarker in BLCA, HNSC, KIRP, LUAD, and UCEC patients of different clinicopathological features.


Assuntos
Aminoidrolases/genética , Biomarcadores Tumorais/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/enzimologia , Neoplasias/mortalidade , Neoplasias/patologia , Valor Preditivo dos Testes , Prognóstico , Mapas de Interação de Proteínas , Transdução de Sinais , Regulação para Cima , Adulto Jovem
3.
Int J Gen Med ; 14: 7025-7042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707394

RESUMO

INTRODUCTION: Cancer is one of the most common malignancies and the leading cause of death worldwide. As a member of the transmembrane emp24 domain (Tmed)/p24 family of proteins, TMED2 expression variations have been documented earlier in only a few subtypes of human cancers, and the multi-omics profiling of TMED2 as a shared biomarker in different other subtypes of human cancers remains to be uncovered. METHODS: In the current study, TMED2 multi-omics analysis in 24 major subtypes of human cancer was performed using different authentic online databases and bioinformatics analysis including UALCAN, Kaplan-Meier (KM) plotter, Human Protein Atlas (HPA), GENT2, MEXPRESS, cBioportal, STRING, DAVID, TIMER, and CTD. RESULTS: In general, the TMED2 expression in 24 major subtypes of human cancers was higher relative to normal controls and was also strongly associated with the lower overall survival (OS) and relapse-free survival (RFS) duration of CESC, ESCA, HNSC, KIRC, LIHC, and LUAD patients. This implies that TMED2 plays a significant role in the development and progression of these cancers. Furthermore, the TMED2 overexpression was also correlated with different clinicopathological features of CESC, ESCA, HNSC, KIRC, LIHC, and LUAD patients. TMED2-associated genes network was involved in 3 diverse pathways, and finally, few stronger correlations were also explored between TMED2 expression and its promoter methylation level, genetic alterations, and CD8+ T immune cells level. CONCLUSION: In conclusion, via this in silico study, we have elucidated that TMED2 can serve as a shared diagnostic and prognostic biomarker in CESC, ESCA, HNSC, KIRC, LIHC, and LUAD patients of different clinicopathological features but, further in vitro and in vivo research should be carried out to confirm these findings.

4.
Sci Rep ; 11(1): 19873, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615943

RESUMO

According to the previous reports, the collagen triple helix repeat containing 1 (CTHRC1) causes tumorigenesis by modulating the tumor microenvironment, however, the evidence is limited to a few human cancer subtypes. In the current study, we analyzed and validated the CTHRC1 expression variations in 24 different human cancer tissues paired with normal tissues using publically available databases. We observed that CTHRC1 was overexpressed in all the 24 major subtypes of human cancers and its overexpression was significantly associated with the reduced overall survival (OS) duration of head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), stomach adenocarcinoma (STAD), and Uterine corpus endometrial carcinoma (UCEC). This implies that CTHRC1 plays a significant role in the development and progression of these cancers. We further noticed that CTHRC1 was also overexpressed in HNSC, KIRC, LIHC, LUAD, STAD, and UCEC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of CTHRC1 associated genes in seven diverse pathways. We also explored few interesting correlations between CTHRC1 expression and promoter methylation, genetic alterations, CNVs, CD8+ T immune cells infiltration, and tumor purity. In conclusion, CTHRC1 can serve as a shared diagnostic and prognostic biomarker in HNSC, KIRC, LIHC, LUAD, STAD, and UCEC patients of different clinicopathological features.


Assuntos
Biomarcadores Tumorais , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos , Biologia Computacional/métodos , Metilação de DNA , Bases de Dados Genéticas , Suscetibilidade a Doenças , Epigênese Genética , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/terapia , Especificidade de Órgãos , Prognóstico , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas
5.
J Pak Med Assoc ; 71(8): 2032-2039, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34418025

RESUMO

Proteins and peptide drugs have a great therapeutic potential and their usage in the treatment of various severe diseases has revolutionised the fields of pharmaceuticals and biotechnology. For successful therapeutic effects, various efforts have been made for effective delivery of proteins/peptide drugs through various routes of administrations. Parenteral and non-parenteral drug deliveries are regarded as significant routes of drug absorption. In addition to intravenous, subcutaneous and intramuscular routes, the oral route is more effective for protein and peptides therapeutics. However, there is a need to improve non-parenteral drug delivery systems (DDS) to increase drug absorption in a more effective way. The present narrative review was planned to describe routes and barriers for protein/peptide drugs and how to improve drug delivery systems in an effective way. For this purpose, numerous research articles were searched from year 2000-2021 using search engines like PubMed, Google Scholar, Medline and ISI Web of Knowledge, and Bioline International while applying different keywords such as 'protein and peptide drugs', 'drug delivery systems', 'parenteral and non-parenteral routes of drug delivery' and 'physicochemical barriers'. It was concluded that the success of the therapeutics is strongly influenced by the differential delivery of targeted antigen, the choice of targeting protein or peptide, and drug-release characteristics of the linker used. Furthermore, there should be an improvement in non-parenteral DDSs so that the drugs might be administered in an appropriate manner.


Assuntos
Peptídeos , Proteínas , Administração Oral , Sistemas de Liberação de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA