Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6294, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491063

RESUMO

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors. The analysis of the corresponding skin samples provided 89.5% sensitivity and 100% specificity. The median seeding dose present in the skin was one order of magnitude higher than in the cerebrospinal fluid, despite the overall fluorescent signal of the skin samples was comparatively lower. Our data support the use of post-mortem cerebrospinal fluid for confirmation of prion disease diagnosis and encourage further studies of the potential of skin biopsy samples for intra-vitam prion diseases´ diagnostics.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/metabolismo , Doenças Priônicas/diagnóstico , Pele/metabolismo , Proteínas Priônicas , Bioensaio , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano
2.
Front Neurol ; 11: 590199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304310

RESUMO

Tau accumulation is a prominent feature in a variety of neurodegenerative disorders and remarkable effort has been expended working out the biochemistry and cell biology of this cytoplasmic protein. Tau's wayward properties may derive from germline mutations in the case of frontotemporal lobar degeneration (FTLD-MAPT) but may also be prompted by less understood cues-perhaps environmental or from molecular damage as a consequence of chronological aging-in the case of idiopathic tauopathies. Tau properties are undoubtedly affected by its covalent structure and in this respect tau protein is not only subject to changes in length produced by alternative splicing and endoproteolysis, but different types of posttranslational modifications that affect different amino acid residues. Another layer of complexity concerns alternate conformations-"conformers"-of the same covalent structures; in vivo conformers can encompass soluble oligomeric species, ramified fibrillar structures evident by light and electron microscopy and other forms of the protein that have undergone liquid-liquid phase separation to make demixed liquid droplets. Biological concepts based upon conformers have been charted previously for templated replication mechanisms for prion proteins built of the PrP polypeptide; these are now providing useful explanations to feature tau pathobiology, including how this protein accumulates within cells and how it can exhibit predictable patterns of spread across different neuroanatomical regions of an affected brain. In sum, the documented, intrinsic heterogeneity of tau forms and conformers now begins to speak to a fundamental basis for diversity in clinical presentation of tauopathy sub-types. In terms of interventions, emphasis upon subclinical events may be worthwhile, noting that irrevocable cell loss and ramified protein assemblies feature at end-stage tauopathy, whereas earlier events may offer better opportunities for diverting pathogenic processes. Nonetheless, the complexity of tau sub-types, which may be present even within intermediate disease stages, likely mitigates against one-size-fits-all therapeutic strategies and may require a suite of interventions. We consider the extent to which animal models of tauopathy can be reasonably enrolled in the campaign to produce such interventions and to slow the otherwise inexorable march of disease progression.

3.
J Biol Chem ; 293(48): 18494-18503, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30275016

RESUMO

Prion diseases are neurodegenerative disorders that affect many mammalian species. Mammalian prion proteins (PrPs) can misfold into many different aggregates. However, only a small subpopulation of these structures is infectious. One of the major unresolved questions in prion research is identifying which specific structural features of these misfolded protein aggregates are important for prion infectivity in vivo Previously, two types of proteinase K-resistant, self-propagating aggregates were generated from the recombinant mouse prion protein in the presence of identical cofactors. Although these two aggregates appear biochemically very similar, they have dramatically different biological properties, with one of them being highly infectious and the other one lacking any infectivity. Here, we used several MS-based structural methods, including hydrogen-deuterium exchange and hydroxyl radical footprinting, to gain insight into the nature of structural differences between these two PrP aggregate types. Our experiments revealed a number of specific differences in the structure of infectious and noninfectious aggregates, both at the level of the polypeptide backbone and quaternary packing arrangement. In particular, we observed that a high degree of order and stability of ß-sheet structure within the entire region between residues ∼89 and 227 is a primary attribute of infectious PrP aggregates examined in this study. By contrast, noninfectious PrP aggregates are characterized by markedly less ordered structure up to residue ∼167. The structural constraints reported here should facilitate development of experimentally based high-resolution structural models of infectiosus mammalian prions.


Assuntos
Príons/química , Príons/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/química , Biocatálise , Espectrometria de Massas , Camundongos , Oxirredução , Príons/síntese química , Príons/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Estrutura Secundária de Proteína
4.
Sci Transl Med ; 9(417)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167394

RESUMO

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is transmissible through iatrogenic routes due to abundant infectious prions [misfolded forms of the prion protein (PrPSc)] in the central nervous system (CNS). Some epidemiological studies have associated sCJD risk with non-CNS surgeries. We explored the potential prion seeding activity and infectivity of skin from sCJD patients. Autopsy or biopsy skin samples from 38 patients [21 sCJD, 2 variant CJD (vCJD), and 15 non-CJD] were analyzed by Western blotting and real-time quaking-induced conversion (RT-QuIC) for PrPSc Skin samples from two patients were further examined for prion infectivity by bioassay using two lines of humanized transgenic mice. Western blotting revealed dermal PrPSc in one of five deceased sCJD patients and one of two vCJD patients. However, the more sensitive RT-QuIC assay detected prion seeding activity in skin from all 23 CJD decedents but not in skin from any non-CJD control individuals (with other neurological conditions or other diseases) during blinded testing. Although sCJD patient skin contained ~103- to 105-fold lower prion seeding activity than did sCJD patient brain tissue, all 12 mice from two transgenic mouse lines inoculated with sCJD skin homogenates from two sCJD patients succumbed to prion disease within 564 days after inoculation. Our study demonstrates that the skin of sCJD patients contains both prion seeding activity and infectivity, which raises concerns about the potential for iatrogenic sCJD transmission via skin.


Assuntos
Síndrome de Creutzfeldt-Jakob/patologia , Príons/patogenicidade , Pele/patologia , Idoso , Animais , Bioensaio , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Priônicas/patologia
5.
PLoS Pathog ; 11(4): e1004832, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875953

RESUMO

The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.


Assuntos
Síndrome de Creutzfeldt-Jakob , Proteínas PrPSc/química , Western Blotting , Humanos , Imunoensaio , Espectrometria de Massas , Fenótipo , Estabilidade Proteica , Estrutura Quaternária de Proteína
6.
J Gen Virol ; 86(Pt 10): 2913-2923, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186247

RESUMO

The clearance of prions from the brain was investigated in bigenic mice designated Tg(tTA : PrP(+/0))3, in which expression of the cellular prion protein (PrP(C)) was regulated by oral doxycycline administration. With suppression of PrP(C) expression, the incubation time for RML prions was prolonged almost threefold from approximately 150 to approximately 430 days. To determine the clearance rate of disease-causing PrP(Sc), bigenic mice were given oral doxycycline beginning 98 days after inoculation with RML prions and sacrificed at various time points over the subsequent 56 days. The half-life (t1/2) for PrP(Sc) was approximately 1.5 days in mouse brain, in reasonable agreement with the apparent t1/2 of 30 h that was determined in a separate study for scrapie-infected mouse neuroblastoma (ScN2a) cells in culture. Both protease-sensitive and -resistant conformers of PrP(Sc) were cleared at the same rate. The t1/2 value for PrP(C) clearance from brain was approximately 18 h, which was considerably longer than the t1/2 of 5 h found in ScN2a cells. The capability of the brain to clear prions raises the possibility that PrP(Sc) is normally made at low levels and continually cleared, and that PrP(Sc) may have a function in cellular metabolism. Moreover, these bigenic mice make it possible to determine both components of PrP(Sc) accumulation, i.e. the rates of formation and clearance, for various strains of prions exhibiting different incubation times.


Assuntos
Encéfalo/metabolismo , Doxiciclina/metabolismo , Príons/metabolismo , Scrapie/metabolismo , Animais , Doxiciclina/farmacologia , Camundongos , Camundongos Endogâmicos , Proteínas PrPSc/metabolismo , Desnaturação Proteica
7.
Proc Natl Acad Sci U S A ; 102(9): 3501-6, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15741275

RESUMO

With the discovery of the prion protein (PrP), immunodiagnostic procedures were applied to diagnose Creutzfeldt-Jakob disease (CJD). Before development of the conformation-dependent immunoassay (CDI), all immunoassays for the disease-causing PrP isoform (PrPSc) used limited proteolysis to digest the precursor cellular PrP (PrPC). Because the CDI is the only immunoassay that measures both the protease-resistant and protease-sensitive forms of PrPSc, we used the CDI to diagnose human prion disease. The CDI gave a positive signal for PrPSc in all 10-24 brain regions (100%) examined from 28 CJD patients. A subset of 18 brain regions from 8 patients with sporadic CJD (sCJD) was examined by histology, immunohistochemistry (IHC), and the CDI. Three of the 18 regions (17%) were consistently positive by histology and 4 of 18 (22%) by IHC for the 8 sCJD patients. In contrast, the CDI was positive in all 18 regions (100%) for all 8 sCJD patients. In both gray and white matter, approximately 90% of the total PrPSc was protease-sensitive and, thus, would have been degraded by procedures using proteases to eliminate PrPC. Our findings argue that the CDI should be used to establish or rule out the diagnosis of prion disease when a small number of samples is available as is the case with brain biopsy. Moreover, IHC should not be used as the standard against which all other immunodiagnostic techniques are compared because an immunoassay, such as the CDI, is substantially more sensitive.


Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico , Biópsia , Encéfalo/metabolismo , Encéfalo/patologia , Códon , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Polimorfismo Genético , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Sensibilidade e Especificidade
8.
J Virol ; 78(4): 2088-99, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747574

RESUMO

Gerstmann-Sträussler-Scheinker (GSS) disease is a dominantly inherited, human prion disease caused by a mutation in the prion protein (PrP) gene. One mutation causing GSS is P102L, denoted P101L in mouse PrP (MoPrP). In a line of transgenic mice denoted Tg2866, the P101L mutation in MoPrP produced neurodegeneration when expressed at high levels. MoPrP(Sc)(P101L) was detected both by the conformation-dependent immunoassay and after protease digestion at 4 degrees C. Transmission of prions from the brains of Tg2866 mice to those of Tg196 mice expressing low levels of MoPrP(P101L) was accompanied by accumulation of protease-resistant MoPrP(Sc)(P101L) that had previously escaped detection due to its low concentration. This conformer exhibited characteristics similar to those found in brain tissue from GSS patients. Earlier, we demonstrated that a synthetic peptide harboring the P101L mutation and folded into a beta-rich conformation initiates GSS in Tg196 mice (29). Here we report that this peptide-induced disease can be serially passaged in Tg196 mice and that the PrP conformers accompanying disease progression are conformationally indistinguishable from MoPrP(Sc)(P101L) found in Tg2866 mice developing spontaneous prion disease. In contrast to GSS prions, the 301V, RML, and 139A prion strains produced large amounts of protease-resistant PrP(Sc) in the brains of Tg196 mice. Our results argue that MoPrP(Sc)(P101L) may exist in at least several different conformations, each of which is biologically active. Such conformations occurred spontaneously in Tg2866 mice expressing high levels of MoPrP(C)(P101L) as well as in Tg196 mice expressing low levels of MoPrP(C)(P101L) that were inoculated with brain extracts from ill Tg2866 mice, with a synthetic peptide with the P101L mutation and folded into a beta-rich structure, or with prions recovered from sheep with scrapie or cattle with bovine spongiform encephalopathy.


Assuntos
Mutação , Peptídeos/síntese química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Conformação Proteica , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Endopeptidases/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/química , Peptídeos/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/patogenicidade , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/genética , Príons/metabolismo , Príons/patogenicidade , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA