Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotoxicology ; 15(8): 1059-1072, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34591733

RESUMO

Despite the widespread use of gold nanoparticles (GNPs), there is no consensus on their distribution to different tissues and organs. The present systematic review and meta-analysis addresses the accumulation of GNPs in brain tissue. Extensive searches were conducted in electronic databases, Medline, Web of Science, EMBASE, and Scopus. Based on inclusion and exclusion criteria, primary and secondary screening was performed. The value of brain accumulation of gold nanoparticle (the percentage of the injection dose of GNPs/gram of brain tissue that applied as effect size (ES) in analysis) and the standard error of the mean were extracted from articles and analyzed by calculating the pooled ES and the pooled confidence interval (CI) using STATA software. p ≤ 0.05 was considered significant. Thirty-eight studies were included in the meta-analysis. The results showed that the amount of GNPs was 0.06% of the injection dose/gram of brain tissue (ES = 0.06, %95 CI: 0.06-0.06, p < 0.0001). Considering the time between injection and tissue harvest (follow-up time), after 1 h the GNPs in brain tissue was 0.288% of the injection dose/gram of tissue (ES = 0.29, 95% CI: 0.25-0.33, p < 0.0001), while after four weeks it was only 0.02% (ES = 0.02, 95% CI: 0.01-0.03, p < 0.0001) of the injection dose/gram of tissue. The amount of GNPs in brain tissue was higher for PEG-coated GNPs compared to uncoated GNPs, and it was 5.6 times higher for rod-shaped GNPs compared to spherical GNPs. The mean amount of GNPs in the brain tissues of animals bearing a tumor was 5.8 times higher than in normal animals.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Encéfalo , Ouro , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653952

RESUMO

The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.


Assuntos
Amiloide/química , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53/química , Substituição de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Humanos , Células MCF-7 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
iScience ; 12: 342-355, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30739016

RESUMO

About half of human cancers are associated with mutations of the tumor suppressor p53. Gained oncogenic functions of the mutants have been related to aggregation behaviors of wild-type and mutant p53. The thermodynamic and kinetic mechanisms of p53 aggregation are poorly understood. Here we find that wild-type p53 forms an anomalous liquid phase. The liquid condensates exhibit several behaviors beyond the scope of classical phase transition theories: their size, ca. 100 nm, is independent of the p53 concentration and decoupled from the protein mass held in the liquid phase. Furthermore, the liquid phase lacks constant solubility. The nucleation of p53 fibrils deviates from the accepted mechanism of sequential association of single solute molecules. We find that the liquid condensates serve as pre-assembled precursors of high p53 concentration that facilitate fibril assembly. Fibril nucleation hosted by precursors represents a novel biological pathway, which opens avenues to suppress protein fibrillation in aggregation diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA