Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Protein Chem Struct Biol ; 138: 275-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220428

RESUMO

Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-ß, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adulto , Humanos , Proteômica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Genômica , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Fatores de Despolimerização de Actina/metabolismo , Anexinas
2.
Mol Biol Rep ; 50(11): 9367-9378, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819498

RESUMO

OBJECTIVE: To observe the effects of acupuncture and moxibustion therapy on pain relief in sciatica rats and to explore the mechanism of its anti-inflammatory effect. METHODS: SPF grade 4-6-week-old Kunming rats were randomly divided into 5 groups including a blank group, sham-operated group, model group, acupuncture, and moxibustion (AnM) group, and positive group. A total of 10 rats were included in each group. The model group, the AnM group, and the positive group were prepared by ligating the left sciatic nerve. AnM group was used for acupuncture and moxibustion therapy intervention, and the positive group was rendered to quick-acting sciatica pills once a day for 7 days (3 courses of treatment). The blank group, sham-operated group, and model group were not treated. The changes in thermal and mechanical pain thresholds were observed before and after the operation, and the morphological changes of the dorsal horn of the spinal cord in the lumbosacral region of the rats in each group were observed by HE staining after the courses of treatment finished. The contents of IL-1ß, IL-6, IL-18, and TNF-α were measured by ELISA and the expressions of NOX1, NOX2, NOX4, and NLRP3 genes were detected by RT-qPCR while the protein expressions of NOX1, NOX2, NOX4 and NLRP3 were analyzed by Western blotting. RESULTS: The AnM and positive group showed a significant increase in thermal and mechanical pain thresholds after treatment, while there was no significant change in the model group. As compared to the control group, the contents of IL- 1ß, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes were significantly increased in the model group (P < 0.05 or P < 0.01). As compared to the model group, the contents of IL-1ß, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes significantly decreased in the AnM and positive groups (P < 0.05 or P < 0.01). The pathological changes of inflammatory infiltration of tissue cells in the dorsal horn of the lumbosacral spinal cord were slowed in the AnM group. CONCLUSION: Acupuncture and moxibustion therapy have a positive effect on pain relief and anti-inflammatory effects in CCI sciatica rats, which may point to the regulation of NOX1, NOX2, NOX4, and NLRP3 expressions, and inhibition of ROS.


Assuntos
Terapia por Acupuntura , Moxibustão , Ciática , Ratos , Animais , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6
3.
Adv Protein Chem Struct Biol ; 137: 135-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37709373

RESUMO

Circadian rhythms are autonomous oscillators developed by the molecular circadian clock, essential for coordinating internal time with the external environment in a 24-h daily cycle. In mammals, this circadian clock system plays a major role in all physiological processes and severely affects human health. The regulation of the circadian clock extends beyond the clock genes to involve several clock-controlled genes. Hence, the aberrant expression of these clock genes leads to the downregulation of important targets that control the cell cycle and the ability to undergo apoptosis. This may lead to genomic instability and promotes carcinogenesis. Alteration in the clock genes and their modulation is recognized as a new approach for the development of effective treatment against several diseases, including cancer. Until now, there has been a lack of understanding of circadian rhythms and cancer disease. For that, this chapter aims to represent the core components of circadian rhythms and their function in cancer pathogenesis and progression. In addition, the clinical impacts, current clock drugs, and potential therapeutic targets have been discussed.


Assuntos
Ritmo Circadiano , Neoplasias , Humanos , Animais , Ritmo Circadiano/genética , Neoplasias/genética , Carcinogênese , Apoptose , Ciclo Celular , Mamíferos
4.
Front Pharmacol ; 14: 1146562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124235

RESUMO

Introduction: Drug delivery systems are the topmost priority to increase drug safety and efficacy. In this study, hybrid porous silicates SBA-15 and its derivatives SBA@N and SBA@3N were synthesized and loaded with an anticancer drug, 5-fluorouracil. The drug release was studied in a simulated physiological environment. Method: These materials were characterized for their textural and physio-chemical properties by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray diffraction (SAX), and nitrogen adsorption/desorption techniques. The surface electrostatics of the materials was measured by zeta potential. Results: The drug loading efficiency of the prepared hybrid materials was about 10%. In vitro drug release profiles were obtained in simulated fluids. Slow drug release kinetics was observed for SBA@3N, which released 7.5% of the entrapped drug in simulated intestinal fluid (SIF, pH 7.2) and 33% in simulated body fluid (SBF, pH 7.2) for 72 h. The material SBA@N presented an initial burst release of 13% in simulated intestinal fluid and 32.6% in simulated gastric fluid (SGF, pH 1.2), while about 70% of the drug was released within the next 72 h. Density functional theory (DFT) calculations have also supported the slow drug release from the SBA@3N material. The release mechanism of the drug from the prepared carriers was studied by first-order, second-order, Korsmeyer-Peppas, Hixson-Crowell, and Higuchi kinetic models. The drug release from these carriers follows Fickian diffusion and zero-order kinetics in SGF and SBF, whereas first-order, non-Fickian diffusion, and case-II transport were observed in SIF. Discussion: Based on these findings, the proposed synthesized hybrid materials may be suggested as a potential drug delivery system for anti-cancer drugs such as 5-fluorouracil.

5.
Drug Des Devel Ther ; 17: 1065-1078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064433

RESUMO

Streptonigrin is an aminoquinone alkaloid isolated from Streptomyces flocculus and is gaining attention as a drug molecule owing to its potential antitumor and antibiotic effects. It was previously used as an anticancer drug but has been discontinued because of its toxic effects. However, according to the most recent studies, the toxicity of streptonigrin and its structurally modified derivatives has been reduced while maintaining their potential pharmacological action at lower concentrations. To date, many investigations have been conducted on this molecule and its derivatives to determine the most effective molecule with low toxicity to enable new drug discovery. Therefore, the main objective of this study is to provide a comprehensive review and to discuss the prospects for streptonigrin and its derived compounds, which may boost the molecule as a highly interesting target molecule for new drug design, development and therapy. To complete this review, relevant literature was collected from several scientific databases, including Google Scholar, PubMed, Scopus and ScienceDirect. Following a complete screening, the obtained information is summarized in the present review to provide a good reference and accelerate the development and utilization of streptonigrin and its derivatives as pharmaceuticals.


Assuntos
Antineoplásicos , Estreptonigrina , Antineoplásicos/farmacologia , Desenho de Fármacos
6.
Vaccines (Basel) ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423005

RESUMO

Rhipicephalus microplus tick highly affects the veterinary sector throughout the world. Different tick control methods have been adopted, and the identification of tick-derived highly immunogenic sequences for the development of an anti-tick vaccine has emerged as a successful alternate. This study aimed to characterize immunogenic sequences from R. microplus ticks prevalent in Pakistan. Ticks collected in the field were morphologically identified and subjected to DNA and RNA extraction. Ticks were molecularly identified based on the partial mitochondrial cytochrome C oxidase subunit (cox) sequence and screened for piroplasms (Theileria/Babesia spp.), Rickettsia spp., and Anaplasma spp. PCR-based pathogens-free R. microplus-derived cDNA was used for the amplification of full-length cysteine protease inhibitor (cystatin 2b), cathepsin L-like cysteine proteinase (cathepsin-L), glutathione S-transferase (GST), ferritin 1, 60S acidic ribosomal protein (P0), aquaporin 2, ATAQ, and R. microplus 05 antigen (Rm05Uy) coding sequences. The cox sequence revealed 100% identity with the nucleotide sequences of Pakistan's formerly reported R. microplus, and full-length immunogenic sequences revealed maximum identities to the most similar sequences reported from India, China, Cuba, USA, Brazil, Egypt, Mexico, Israel, and Uruguay. Low nonsynonymous polymorphisms were observed in ATAQ (1.5%), cathepsin-L (0.6%), and aquaporin 2 (0.4%) sequences compared to the homologous sequences from Mexico, India, and the USA, respectively. Based on the cox sequence, R. microplus was phylogenetically assembled in clade C, which includes R. microplus from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh, and India. In the phylogenetic trees, the cystatin 2b, cathepsin-L, ferritin 1, and aquaporin 2 sequences were clustered with the most similar available sequences of R. microplus, P0 with R. microplus, R. sanguineus and R. haemaphysaloides, and GST, ATAQ, and Rm05Uy with R. microplus and R. annulatus. This is the first report on the molecular characterization of clade C R. microplus-derived immunogenic sequences.

7.
Biomed Pharmacother ; 155: 113786, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271564

RESUMO

A group of bioactive, isoprenoid pigments known as carotenoids is mostly present in fruits and vegetables. Carotenoids are essential for the prevention of physiological issues, which makes maintaining excellent health easier. They are effective functional ingredients with potent health-promoting properties that are widely present in our food and linked to a decrease in the prevalence of chronic diseases, including respiratory diseases. Respiratory infections are the primary cause of death and life-threatening conditions globally, wreaking havoc on the global health system. People rely on dietary sources of carotenoids to reduce a plethora of respiratory diseases such as chronic obstructive pulmonary disease (COPD), lung cancer, asthma, and so on. Carotenoids have received a lot of interest recently in several parts of the world due to their therapeutic potential in altering the pathogenic pathways underlying inflammatory respiratory diseases, which may improve disease control and have beneficial health benefits. This review aimed to provide a thorough understanding of the therapeutic potential of dietary carotenoids in the treatment of respiratory diseases and to identify possible candidates for novel therapeutic development.


Assuntos
Antioxidantes , Carotenoides , Humanos , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Carotenoides/metabolismo , Antioxidantes/metabolismo , Verduras , Dieta , Frutas
8.
Front Cell Dev Biol ; 10: 984311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158215

RESUMO

Cancer is still one of the world's deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.

9.
Biomed Res Int ; 2022: 2467574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046453

RESUMO

Ondansetron tablets that are directly compressed using crospovidone and croscarmellose as a synthetic super disintegrant are the subject of this investigation. A central composite, response surface, randomly quadratic, nonblock (version 13.0.9.0) 32 factorial design is used to optimize the formulation (two-factor three-level). To make things even more complicated, nine different formulation batches (designated as F1-F9) were created. There were three levels of crospovidone and croscarmellose (+1, 0, -1). In addition to that, pre- and postcompressional parameters were evaluated, and all evaluated parameters were found to be within acceptable range. Among all postcompressional parameter dispersion and disintegration time, in vitro drug release experiments (to quantify the amount of medication released from the tablet) and their percentage prediction error were shown to have a significant influence on three dependent variables. Various pre- and postcompression characteristics of each active component were tested in vitro. Bulk density, tap density, angle of repose, Carr's index, and the Hausner ratio were all included in this analysis, as were many others. This tablet's hardness and friability were also assessed along with its dimension and weight variations. Additional stability studies may be conducted using the best batch of the product. For this study, we utilised the Design-Expert software to select the formulation F6, which had dispersion times of 17.67 ± 0.03 seconds, disintegration times of 120.12 ± 0.55 seconds, and percentage drug release measurements of 99.25 ± 0.36 within 30 minutes. Predicted values and experimental data had a strong correlation. Fast dissolving pills of ondansetron hydrochloride may be created by compressing the tablets directly.


Assuntos
Ondansetron , Povidona , Excipientes , Solubilidade , Comprimidos
10.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014304

RESUMO

Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (ß-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses.


Assuntos
Estilbenos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antivirais , Descoberta de Drogas , Preparações Farmacêuticas , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico
12.
Saudi J Biol Sci ; 28(9): 5359-5363, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466115

RESUMO

Hepatitis C virus remained a public health problem with approximately half of the patients untreated and undiagnosed. Chronic HCV is a leading cause of cirrhosis, fibrosis, hepatocellular carcinoma and other hepatic morbidities. Active HCV has a prevalence rate of about 1% (71 million). By July, 2019, 10 million population of Pakistan was declared to have active HCV infection. According to World Health Organization, 23,720 people died of hepatitis-related complexities in Pakistan in 2016. Individuals with certain types of ABO blood groups were more susceptible to diverse kinds of infections. For instance, blood types A and AB predisposed individuals to severe malaria, while type O conferred resistance to the many of the protozoan agent. This study was designed to explore the association of hepatitis C viremia to blood groups, Rh factors, age and gender distribution among Pakistani population. Total 246 participants were screened for HCV in Taqwa diagnostics laboratory, Multan and 200 were found positive. They were divided into 4 groups on the basis of their age. First group included patients ranging from 17 to 25 (52), second, third and fourth group included patients from 26 to 34 (92), 35 to 43 (42) and 44 to above (14) respectively. Confirmed Hepatitis C patients were subjected to analysis of blood group, Rh factor and viral load. Results demonstrated that patients having 'O' blood group (60.37%) were reported for high viral load than any of the other blood groups in the patients of Southern Punjab, Pakistan. Furthermore, Rh-negative factor (26.42) was associated with high viral load than that of the Rh-positive factor (73.58). Disclosure practiced that age group (26-34) was reported for the high viral load than that of the any other group of this study. Females were more aggressively affected by HCV Viremia than male because the mean viral load among the females was higher than that of the males. Greater social awareness and gender-sensitive healthcare is necessary to improve the experiences of patients with HCV.

13.
Ann Clin Lab Sci ; 50(6): 711-716, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33334784

RESUMO

B-cell translocation gene 2 (Btg2) is a tumor suppressor gene that is implicated in many biological processes. Akt is a serine/threonine kinase which was originally discovered as an oncogene. The prognostic value of Akt activation in some types of cancers and its effect on tumor suppressor genes remains to be fully elucidated. In the current research we have investigated the Akt-mediated downregulation of Btg2 that increased cells proliferation and cells survival. Human leukemia HL-60, THP-1 and colon cancer DLD-1 cells were used in this study. Inhibition of Akt with LY294002 significantly increased Btg2 mRNA expression while activation of Akt with insulin decreased Btg2 expression. Contrary to this, treatment of cells with U0126, a MAPK kinase inhibitor, significantly abrogated Btg2 expression. Moreover, LY294002 treatment increased Erk1/2 activation, decreased cells proliferation and cells viability while activation of Akt by insulin led to an increase in cells survival and cells division. Exogenous expression of Btg2 decreased cells proliferation both in the presence and absence of insulin and arrested cells at G1 phase. Akt negatively regulates Btg2 via Erk1/2 inhibition that lead to an increase in cells survival and cells proliferation. This elucidates a new mechanism for Btg2 regulation and Akt mediated tumorgenicity.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linfócitos B , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Imediatamente Precoces/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
14.
Int J Biol Macromol ; 145: 1162-1170, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730970

RESUMO

Angiogenesis is one of the most important processes in repair and regeneration of many tissues and organs. Blood vessel formation also play a major role in repair of dental tissue(s) after ailments like periodontitis. Here we report the preparation of chitosan/carboxymethyl cellulose/hydroxyapatite based hydrogels, loaded with variable concentrations of thyroxin i.e., 0.1 µg/ml, 0.5 µg/ml and 1 µg/ml. Scanning electron microcopy images (SEM) showed all hydrogels were found to be porous and solution absorption study exhibited high swelling potential in aqueous media. FTIR spectra confirmed that the used materials did not change their chemical identity in synthesized hydrogels. The synthesized hydrogels demonstrated good bending, folding, rolling and stretching abilities. The hydrogels were tested in chick chorioallantoic membrane (CAM) assay to investigate their angiogenic potential. Hydrogel containing 0.1 µg/ml of thyroxine showed maximum neovascularization. For cytotoxicity analyses, preosteoblast cells (MC3T3-E1) were seeded on these hydrogels and materials were found to be non-toxic. These hydrogels with pro-angiogenic activity possess great potential to be used for periodontal regeneration.


Assuntos
Indutores da Angiogênese/farmacologia , Carboximetilcelulose Sódica/farmacologia , Quitosana/farmacologia , Durapatita/farmacologia , Hidrogéis/farmacologia , Tiroxina/farmacologia , Perda do Osso Alveolar/terapia , Processo Alveolar , Animais , Carboximetilcelulose Sódica/química , Adesão Celular , Proliferação de Células , Celulose , Galinhas , Quitosana/análogos & derivados , Quitosana/química , Membrana Corioalantoide , Liberação Controlada de Fármacos , Durapatita/química , Hidrogéis/química , Tiroxina/química , Engenharia Tecidual/métodos
15.
J Zhejiang Univ Sci B ; 19(2): 120-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29405040

RESUMO

OBJECTIVE: Scandix pecten-veneris L. is a less studied wild edible herb and is considered an extinct plant species in many parts of the world. This study was designed to evaluate its phytochemical composition and biological potential of S. pecten-veneris L. METHODS: Phytochemicals including alkaloids, flavonoids, polyphenols, and tannins were determined in extracts of S. pecten-veneris. Antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), while reducing power was tested by ferric reducing/antioxidant power (FRAP) assay. Antimicrobial activity against seven bacterial and four fungal strains was evaluated using agar well diffusion assay. Enzymes inhibition study was performed for urease, phosphodiesterase-I, and catalase-II. RESULTS: S. pecten-veneris showed moderate antiradical activity and reducing potential of hydroxyl radicals to about 20% of the initial value. The antioxidant activity of various extracts of S. pecten-veneris showed a linear correlation with total phenolic contents in the order of water>n-butanol>chloroform>ethyl acetate>methanol extracts. S. pecten-veneris leaves showed the highest inhibitory activity against Staphylococcus aureus while the highest antifungal activity was observed against Candida albicans. The plant extract was most potent against urease enzymes but showed moderate activity against phosphodiestrase-I and carbonic anhydrase-II. CONCLUSIONS: Our data demonstrate that in addition to its culinary uses, S. pecten-veneris has good medicinal potential and hence could be used for treating some specific health ailments.


Assuntos
Apiaceae/química , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/análise , Extratos Vegetais/farmacologia , Plantas Comestíveis/química , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Extratos Vegetais/análise , Staphylococcus aureus/efeitos dos fármacos , Urease/antagonistas & inibidores
16.
Arch Med Sci ; 13(2): 470-480, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28261303

RESUMO

INTRODUCTION: It is a widely held view that a progressive reduction of beta-cell mass occurs in the progression of diabetes. RAF-1 kinase and pancreas duodenal homeobox 1 (PDX-1) are major factors that promote survival of cells and maintain normal insulin functions. In this study we investigated the effect of a ß-adrenergic receptor agonist and antagonist on RAF-1 and PDX-1, and their respective effects on apoptosis and insulin release in RIN-m5F cells. MATERIAL AND METHODS: RIN-m5F cells were cultured in normal (5 mM) and high (25 mM) glucose to mimic diabetic conditions, followed by treatment with 5 µM, 10 µM and 20 µM of isoproterenol and isoproterenol + propranolol for 6, 12 and 24 h. Western blotting and reverse transcription analysis were performed to examine the expression of RAF-1 and PDX-1. Annexin-V-FITC and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays were used to investigate apoptosis. ELISA was used to measure insulin levels. Reverse transcription polymerase chain reaction was conducted to investigate the expression of genes. RESULTS: Stimulation of ß-adrenergic receptors with isoproterenol significantly induced RAF-1 and PDX-1 genes in a concentration-dependent and time-independent manner. Changes were significant both at protein and mRNA levels. Up-regulation of RAF-1 and PDX-1 was accompanied by improved insulin levels and reduced apoptosis. Concentrations of 10 µM and 20 µM for 12 and 24 h were more effective in achieving significant differences in the experimental and control groups. Propranolol reversed the effect of isoproterenol mostly at maximum concentrations and time periods. CONCLUSIONS: A positive effect of a ß-adrenergic agonist on RAF-1 and PDX-1, reduction in ß-cell apoptosis and improved insulin contents can help to understand the pathogenesis of diabetes and to develop novel approaches for the ß-cell dysfunction in diabetes.

17.
Clinics (Sao Paulo) ; 70(8): 569-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26247670

RESUMO

OBJECTIVE: The aim of this study was to determine the in vitro effect of glutamine and insulin on apoptosis, mitochondrial membrane potential, cell permeability, and inflammatory cytokines in hyperglycemic umbilical vein endothelial cells. MATERIALS AND METHODS: Human umbilical vein endothelial cells were grown and subjected to glutamine and insulin to examine the effects of these agents on the hyperglycemic state. Mitochondrial function and the production of inflammatory cytokines were assessed using fluorescence analysis and multiple cytotoxicity assays. Apoptosis was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. RESULTS: Glutamine maintains the integrity of the mitochondria by reducing the cell permeability and cytochrome c levels and increasing the mitochondrial membrane potential. The cytochrome c level was significantly (p<0.005) reduced when the cells were treated with glutamine. An apoptosis assay revealed significantly reduced apoptosis (p<0.005) in the glutamine-treated cells. Moreover, glutamine alone or in combination with insulin modulated inflammatory cytokine levels. Interleukin-10, interleukin-6, and vascular endothelial growth factor were up-regulated while tumor necrosis factor-α was down-regulated after treatment with glutamine. CONCLUSION: Glutamine, either alone or in combination with insulin, can positively modulate the mitochondrial stress and cell permeability in umbilical vein endothelial cells. Glutamine regulates the expression of inflammatory cytokines and maintains the balance of the mitochondria in a cytoprotective manner.


Assuntos
Apoptose/efeitos dos fármacos , Glutamina/farmacologia , Hiperglicemia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/análise , Citocinas/análise , Citocinas/efeitos dos fármacos , Combinação de Medicamentos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Mitocôndrias/metabolismo
18.
Clinics ; 70(8): 569-576, 08/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-753961

RESUMO

OBJECTIVE: The aim of this study was to determine the in vitro effect of glutamine and insulin on apoptosis, mitochondrial membrane potential, cell permeability, and inflammatory cytokines in hyperglycemic umbilical vein endothelial cells. MATERIALS AND METHODS: Human umbilical vein endothelial cells were grown and subjected to glutamine and insulin to examine the effects of these agents on the hyperglycemic state. Mitochondrial function and the production of inflammatory cytokines were assessed using fluorescence analysis and multiple cytotoxicity assays. Apoptosis was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. RESULTS: Glutamine maintains the integrity of the mitochondria by reducing the cell permeability and cytochrome c levels and increasing the mitochondrial membrane potential. The cytochrome c level was significantly (p<0.005) reduced when the cells were treated with glutamine. An apoptosis assay revealed significantly reduced apoptosis (p<0.005) in the glutamine-treated cells. Moreover, glutamine alone or in combination with insulin modulated inflammatory cytokine levels. Interleukin-10, interleukin-6, and vascular endothelial growth factor were up-regulated while tumor necrosis factor-α was down-regulated after treatment with glutamine. CONCLUSION: Glutamine, either alone or in combination with insulin, can positively modulate the mitochondrial stress and cell permeability in umbilical vein endothelial cells. Glutamine regulates the expression of inflammatory cytokines and maintains the balance of the mitochondria in a cytoprotective manner. .


Assuntos
Humanos , Apoptose/efeitos dos fármacos , Glutamina/farmacologia , Hiperglicemia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocromos c/análise , Citocinas/análise , Citocinas/efeitos dos fármacos , Combinação de Medicamentos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Mitocôndrias/metabolismo
19.
Cell Physiol Biochem ; 36(3): 988-1003, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26087920

RESUMO

BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models. METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8ß- hydroxyl- 4ß, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Lactonas/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Sesquiterpenos/farmacologia , Tanacetum/química , Animais , Anticarcinógenos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/agonistas , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Humanos , Lactonas/isolamento & purificação , Células MCF-7 , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transplante de Neoplasias , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/isolamento & purificação , Transdução de Sinais , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
PLoS One ; 10(5): e0127434, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996383

RESUMO

Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 µg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.


Assuntos
Anticarcinógenos/farmacologia , Apiaceae/química , Apoptose/efeitos dos fármacos , Neoplasias Mamárias Animais/metabolismo , Extratos Vegetais/farmacologia , Animais , Anticarcinógenos/administração & dosagem , Biomarcadores Tumorais/metabolismo , Caspase 7/metabolismo , Caspase 9/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Imuno-Histoquímica , Células MCF-7 , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Extratos Vegetais/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA