Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 234: 109598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37479076

RESUMO

Sodium iodate (NaIO3) induces retinal pigment epithelium (RPE) dysfunction, which leads to photoreceptor degeneration. Previously, we used electron microscopy to show that the administration of NaIO3 resulted in the accumulation of cell debris in the subretinal space, which was thought to be caused by failed phagocytosis in the outer segment of the photoreceptor due to RPE dysfunction. We further analyzed the pathological changes in the retina and choroid of NaIO3-injected mice, and found that the expression of OTX2, an RPE marker, disappeared from central part of the RPE 1 day after NaIO3 administration. Furthermore, fenestrated capillaries (choriocapillaris, CC) adjacent to the RPE could not be identified only 2 days after NaIO3 administration. An examination of the expression of the CC-specific protein plasmalemma vesicle-associated protein (PLVAP), in sections and flat-mount retina/choroid specimens showed destruction of the CC, and complete disappearance of the PLVAP signal 7 days after NaIO3 administration. In contrast, CD31 flat-mount immunohistochemistry of the retina indicated no difference in retinal vessels between NaIO3-treated mice and controls. Electron microscopy showed that the fenestrated capillaries in the kidney and duodenum were morphologically indistinguishable between control and NaIO3-treated mice. We examined cytokine production in the retina and RPE, and found that the Vegfa transcript level in the RPE decreased starting 1 day after NaIO3 administration. Taken together, these observations show that NaIO3 reduces the CC in the early stages of the pathology, which is accompanied by a rapid decrease in Vegfa expression in the RPE.


Assuntos
Degeneração Retiniana , Epitélio Pigmentado da Retina , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Regulação para Baixo , Degeneração Retiniana/metabolismo , Iodatos/toxicidade , Corioide/metabolismo , Atrofia/metabolismo
2.
Biochem Biophys Res Commun ; 512(4): 927-933, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929925

RESUMO

Mammals possess four Sall transcription factors that play various roles in organogenesis. Previously, we found that Sall1 is expressed in microglia in the central nervous system, and it plays pivotal roles in microglia maturation. In the eye, Sall1 was also expressed in the developing lens, and we examined its role in lens development. A knock-in mouse harboring the EGFP gene in the Sall1 locus (Sall1-gfp) was used to analyze the Sall1 expression pattern. In Sall1-gfp/wild, EGFP was expressed throughout the presumptive lens at E11.5, and subsequently the expression in the lens epithelium became weaker. After birth, signals were observed in the equator region. The effects of Sall1 knockout on lens development were examined in Sall1-gfp/gfp. Lens sections revealed small vacuole-like holes and gaps in the center of the lens fibers at E14.5. Subsequently, the vacuoles appeared in most regions of the fiber cells. Electron microscopic analysis indicated that the vacuoles were between the fiber cells, leading to huge gaps. In addition, contact between the lens epithelium and apical end of the fiber cell was disrupted, and there were gaps between the adjoining lens epithelial cells. However, gap junction structure was observed by electron microscopic analysis, and immunostaining of Zo1 showed rather appropriate expression pattern. Immunohistochemistry indicated that the major lens transcription factors Prox1 and Pax6 were expressed in relatively normal patterns. However, although the expression of Prox1 and Pax6 decreased in nuclei in the control lens, it remained in Sall1-gfp/gfp. In addition, lower expression level of c-Maf protein was observed. Therefore, Sall1 is strongly expressed in the lens from the early developmental stage and plays an essential role in the maintenance of fiber cell and lens epithelium adhesion.


Assuntos
Cristalino/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cristalino/embriologia , Cristalino/crescimento & desenvolvimento , Cristalino/patologia , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Vacúolos/patologia
3.
Microbiol Immunol ; 62(4): 221-228, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446491

RESUMO

Helicobacter pylori (H. pylori), a gram-negative microaerophilic bacterial pathogen that colonizes the stomachs of more than half of all humans, is linked to chronic gastritis, peptic ulcers and gastric cancer. Spiral-shaped H. pylori undergo morphologic conversion to a viable but not culturable coccoid form when they transit from the microaerobic stomach into the anaerobic intestinal tract. However, little is known about the morphological and pathogenic characteristics of H. pylori under prolonged anaerobic conditions. In this study, scanning electron microscopy was used to document anaerobiosis-induced morphological changes of H. pylori, from helical to coccoid to a newly defined fragmented form. Western blot analysis indicated that all three forms express certain pathogenic proteins, including the bacterial cytotoxin-associated gene A (CagA), components of the cag-Type IV secretion system (TFSS), the blood group antigen-binding adhesin BabA, and UreA (an apoenzyme of urease), almost equally. Similar urease activities were also detected in all three forms of H. pylori. However, in contrast to the helical form, bacterial motility and TFSS activity were found to have been abrogated in the anaerobiosis-induced coccoid and fragmented forms of H. pylori. Notably, it was demonstrated that some of the anaerobiosis-induced fragmented state cells could be converted to proliferation-competent helical bacteria in vitro. These results indicate that prolonged exposure to the anaerobic intestine may not eliminate the potential for H. pylori to revert to the helical pathogenic state.


Assuntos
Proteínas de Bactérias/genética , Helicobacter pylori/citologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Anaerobiose , Antibacterianos , Antígenos de Bactérias/genética , Linhagem Celular , Proliferação de Células , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter/microbiologia , Humanos , Microscopia Eletrônica de Varredura , Sistemas de Secreção Tipo IV/genética , Urease/genética , Fatores de Virulência/genética
4.
Sci Rep ; 7(1): 6650, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751779

RESUMO

Because several studies have shown that exogenous miR-199a has antiviral effects against various viruses, including herpesviruses, we examined how miR-199a exerts its antiviral effects using epithelial tumour cell lines infected with herpes simplex virus-1 (HSV-1). We found that both miR-199a-5p and -3p impair the secondary envelopment of HSV-1 by suppressing their common target, ARHGAP21, a Golgi-localized GTPase-activating protein for Cdc42. We further found that the trans-cisternae of the Golgi apparatus are a potential membrane compartment for secondary envelopment. Exogenous expression of either pre-miR-199a or sh-ARHGAP21 exhibited shared phenotypes i.e. alteration of Golgi function in uninfected cells, inhibition of HSV-1 secondary envelopment, and reduction of trans-Golgi proteins upon HSV-1 infection. A constitutively active form of Cdc42 also inhibited HSV-1 secondary envelopment. Endogenous levels of miR-199a in epithelial tumour cell lines were negatively correlated with the efficiency of HSV-1 secondary envelopment within these cells. These results suggest that miR-199a is a crucial regulator of Cdc42 activity on Golgi membranes, which is important for the maintenance of Golgi function and for the secondary envelopment of HSV-1 upon its infection.


Assuntos
Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Herpes Simples/metabolismo , MicroRNAs/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Regulação para Baixo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , Humanos , Transdução de Sinais
5.
Sci Rep ; 7(1): 3855, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634350

RESUMO

Pericytes are believed to originate from either mesenchymal or neural crest cells. It has recently been reported that pericytes play important roles in the central nervous system (CNS) by regulating blood-brain barrier homeostasis and blood flow at the capillary level. However, the origin of CNS microvascular pericytes and the mechanism of their recruitment remain unknown. Here, we show a new source of cerebrovascular pericytes during neurogenesis. In the CNS of embryonic day 10.5 mouse embryos, CD31+F4/80+ hematopoietic lineage cells were observed in the avascular region around the dorsal midline of the developing midbrain. These cells expressed additional macrophage markers such as CD206 and CD11b. Moreover, the CD31+F4/80+ cells phagocytosed apoptotic cells as functionally matured macrophages, adhered to the newly formed subventricular vascular plexus, and then divided into daughter cells. Eventually, these CD31+F4/80+ cells transdifferentiated into NG2/PDGFRß/desmin-expressing cerebrovascular pericytes, enwrapping and associating with vascular endothelial cells. These data indicate that a subset of cerebrovascular pericytes derive from mature macrophages in the very early phase of CNS vascular development, which in turn are recruited from sites of embryonic hematopoiesis such as the yolk sac by way of blood flow.


Assuntos
Sistema Nervoso Central/irrigação sanguínea , Macrófagos/citologia , Macrófagos/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Animais , Biomarcadores , Capilares/embriologia , Rastreamento de Células , Transdiferenciação Celular , Camundongos , Camundongos Knockout , Fenótipo
6.
Sci Rep ; 6: 29157, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377701

RESUMO

Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis.


Assuntos
Desenvolvimento Embrionário , Hematopoese , Metiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Coração/embriologia , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Metiltransferases/genética , Morfolinos/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Mielopoese/efeitos dos fármacos , Mielopoese/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
IET Syst Biol ; 9(2): 41-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26672147

RESUMO

NF-κB is a transcription factor regulating expression of more than 500 genes, and its dysfunction leads to the autoimmune and inflammatory diseases. In malignant cancer cells, NF-κB is constitutively activated. Thus the elucidation of mechanisms for NF-κB regulation is important for the establishment of therapeutic treatment caused by incorrect NF-κB responses. Cytoplasmic NF-κB translocates to the nucleus by the application of extracellular stimuli such as cytokines. Nuclear NF-κB is known to oscillate with the cycle of 1.5-4.5 h, and it is thought that the oscillation pattern regulates the expression profiles of genes. In this review, first we briefly describe regulation mechanisms of NF-κB. Next, published computational simulations on the oscillation of NF-κB are summarised. There are at least 60 reports on the computational simulation and analysis of NF-κB oscillation. Third, the importance of a 'space' for the regulation of oscillation pattern of NF-κB is discussed, showing altered oscillation pattern by the change in spatial parameters such as diffusion coefficient, nuclear to cytoplasmic volume ratio (N/C ratio), and transport through nuclear membrane. Finally, simulations in a true intracellular space (TiCS), which is an intracellular 3D space reconstructed in a computer with organelles such as nucleus and mitochondria are discussed.


Assuntos
Relógios Biológicos/fisiologia , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Simulação por Computador , Redes Reguladoras de Genes/fisiologia , Humanos
8.
Cell Rep ; 12(12): 1951-9, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26365190

RESUMO

Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca(2+) increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias/metabolismo , Células de Schwann/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Estimulação Elétrica , Expressão Gênica , Imagem Molecular , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Organogênese/fisiologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Células de Schwann/citologia , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura
9.
PLoS One ; 10(6): e0127325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061282

RESUMO

Radiation therapy (RT) is pivotal in the treatment of many central nervous system (CNS) pathologies; however, exposure to RT in children is associated with a higher risk of secondary CNS tumors. Although recent research interest has focused on the reparative and therapeutic role of microglia, their recruitment following RT has not been elucidated, especially in the developing CNS. Here, we investigated the spatiotemporal dynamics of microglia during tissue repair in the irradiated embryonic medaka brain by whole-mount in situ hybridization using a probe for Apolipoprotein E (ApoE), a marker for activated microglia in teleosts. Three-dimensional imaging of the distribution of ApoE-expressing microglia in the irradiated embryonic brain clearly showed that ApoE-expressing microglia were abundant only in the late phase of phagocytosis during tissue repair induced by irradiation, while few microglia expressed ApoE in the initial phase of phagocytosis. This strongly suggests that ApoE has a significant function in the late phase of phagocytosis by microglia in the medaka brain. In addition, the distribution of microglia in p53-deficient embryos at the late phase of phagocytosis was almost the same as in wild-type embryos, despite the low numbers of irradiation-induced apoptotic neurons, suggesting that constant numbers of activated microglia were recruited at the late phase of phagocytosis irrespective of the extent of neuronal injury. This medaka model of microglia demonstrated specific recruitment after irradiation in the developing CNS and could provide a useful potential therapeutic strategy to counteract the detrimental effects of RT.


Assuntos
Sistema Nervoso Central/fisiologia , Microglia/fisiologia , Oryzias/embriologia , Animais , Apoptose/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Radiação Ionizante
10.
J Virol ; 88(9): 4657-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522907

RESUMO

UNLABELLED: Herpesviruses have evolved a unique mechanism for nuclear egress of nascent progeny nucleocapsids: the nucleocapsids bud through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes (primary envelopment), and enveloped nucleocapsids then fuse with the outer nuclear membrane to release nucleocapsids into the cytoplasm (de-envelopment). We have shown that the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (or VP13/VP14) is a novel regulator for HSV-1 nuclear egress. In particular, we demonstrated the following: (i) UL47 formed a complex(es) with HSV-1 proteins UL34, UL31, and/or Us3, which have all been reported to be critical for viral nuclear egress, and these viral proteins colocalized at the nuclear membrane in HSV-1-infected cells; (ii) the UL47-null mutation considerably reduced primary enveloped virions in the perinuclear space although capsids accumulated in the nucleus; and (iii) UL47 was detected in primary enveloped virions in the perinuclear space by immunoelectron microscopy. These results suggested that UL47 promoted HSV-1 primary envelopment, probably by interacting with the critical HSV-1 regulators for viral nuclear egress and by modulating their functions. IMPORTANCE: Like other herpesviruses, herpes simplex virus 1 (HSV-1) has evolved a vesicle-mediated nucleocytoplasmic transport mechanism for nuclear egress of nascent progeny nucleocapsids. Although previous reports identified and characterized several HSV-1 and cellular proteins involved in viral nuclear egress, complete details of HSV-1 nuclear egress remain to be elucidated. In this study, we have presented data suggesting (i) that the major HSV-1 virion structural protein UL47 (or VP13/VP14) formed a complex with known viral regulatory proteins critical for viral nuclear egress and (ii) that UL47 played a regulatory role in HSV-1 primary envelopment. Thus, we identified UL47 as a novel regulator for HSV-1 nuclear egress.


Assuntos
Herpesvirus Humano 1/fisiologia , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Ligação Proteica , Coelhos
11.
Mol Cell ; 52(6): 794-804, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24268578

RESUMO

Autophagy is a cellular self-catabolic process wherein organelles, macromolecules, and invading microbes are sequestered in autophagosomes that fuse with lysosomes. In this study, we uncover the role of nitric oxide (NO) as a signaling molecule for autophagy induction via its downstream mediator, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP). We found that 8-nitro-cGMP-induced autophagy is mediated by Lys63-linked polyubiquitination and that endogenous 8-nitro-cGMP promotes autophagic exclusion of invading group A Streptococcus (GAS) from cells. 8-nitro-cGMP can modify Cys residues by S-guanylation of proteins. We showed that intracellular GAS is modified with S-guanylation extensively in autophagosomes-like vacuoles, suggesting the role of S-guanylation as a marker for selective autophagic degradation. This finding is supported by the fact that S-guanylated bacteria were selectively marked with polyubiquitin, a known molecular tag for selective transport to autophagosomes. These results collectively indicate that 8-nitro-cGMP plays a crucial role in cytoprotection during bacterial infections or inflammations via autophagy upregulation.


Assuntos
Autofagia , GMP Cíclico/análogos & derivados , Imunidade Inata , Macrófagos/metabolismo , Streptococcus pyogenes/metabolismo , Animais , Proteína 5 Relacionada à Autofagia , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Células HeLa , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Poliubiquitina/metabolismo , Transporte Proteico , Transdução de Sinais , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Fatores de Tempo , Transfecção , Ubiquitinação
12.
Cereb Cortex ; 23(8): 1824-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22705452

RESUMO

Polypyrimidine tract-binding protein (PTB) is a well-characterized RNA-binding protein and known to be preferentially expressed in neural stem cells (NSCs) in the central nervous system; however, its role in NSCs in the developing brain remains unclear. To explore the role of PTB in embryonic NSCs in vivo, Nestin-Cre-mediated conditional Ptb knockout mice were generated for this study. In the mutant forebrain, despite the depletion of PTB protein, neither abnormal neurogenesis nor flagrant morphological abnormalities were observed at embryonic day 14.5 (E14.5). Nevertheless, by 10 weeks, nearly all mutant mice succumbed to hydrocephalus (HC), which was caused by a lack of the ependymal cell layer in the dorsal cortex. Upon further analysis, a gradual loss of adherens junctions (AJs) was observed in the ventricular zone (VZ) of the dorsal telencephalon in the mutant brains, beginning at E14.5. In the AJs-deficient VZ, impaired interkinetic nuclear migration and precocious differentiation of NSCs were observed after E14.5. These findings demonstrated that PTB depletion in the dorsal telencephalon is causally involved in the development of HC and that PTB is important for the maintenance of AJs in the NSCs of the dorsal telencephalon.


Assuntos
Junções Aderentes/ultraestrutura , Hidrocefalia/etiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Telencéfalo/embriologia , Animais , Hidrocefalia/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/ultraestrutura , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Telencéfalo/anormalidades
13.
PLoS One ; 7(12): e51539, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236515

RESUMO

Sepsis is a major clinical challenge and septic encephalopathy is its nasty complication. The pathogenesis and underlying mechanisms of septic encephalopathy are not well understood. This study sought to fully characterize sepsis-associated biochemical and histopathological changes in brains of mice after cecal ligation and puncture, regarded as a highly clinically relevant animal model of polymicrobial sepsis. Real-time PCR analysis showed that gene expression levels of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1ß, were significantly up-regulated in brain tissues from septic mice, but to a much lesser extent when compared with those in peripheral tissues such as lungs. Blood-brain barrier (BBB) permeability was significantly increased in septic mice, as determined by the measurement of sodium fluorescein and Evans blue content. Sepsis resulted in increases in NADPH oxidase activity and expression of p47(phox) and p67(phox) and up-regulation of inducible nitric oxide (NO) synthase in brains, indicating that superoxide, produced by NADPH oxidase, reacts with NO to form peroxynitrite, that maybe lead to the loss of BBB integrity. Light and electron microscopic examination of septic mouse brain showed serious neuronal degeneration, as indicated by hyperchromatic, shrunken, pyknotic, and electron-dense neurons. These histopathological changes were prevented by treatment with the free radical scavenger edaravone. Together, these results suggest that sepsis can lead to rapid neurodegenerative changes in brains via free radical species production and possibly subsequent injury to the BBB. We may also provide a potentially useful therapeutic tool for treating septic encephalopathy.


Assuntos
Antipirina/análogos & derivados , Sequestradores de Radicais Livres/uso terapêutico , Regulação da Expressão Gênica/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controle , Sepse/complicações , Animais , Antipirina/uso terapêutico , Barreira Hematoencefálica/metabolismo , Ceco/lesões , Citocinas/metabolismo , Edaravone , Azul Evans , Fluoresceína , Ligadura , Camundongos , Microscopia Eletrônica , NADPH Oxidases/metabolismo , Doenças Neurodegenerativas/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sepse/etiologia
14.
J Immunol ; 186(7): 4253-62, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357262

RESUMO

In this study, we demonstrated a new airway Ag sampling site by analyzing tissue sections of the murine nasal passages. We revealed the presence of respiratory M cells, which had the ability to take up OVA and recombinant Salmonella typhimurium expressing GFP, in the turbinates covered with single-layer epithelium. These M cells were also capable of taking up respiratory pathogen group A Streptococcus after nasal challenge. Inhibitor of DNA binding/differentiation 2 (Id2)-deficient mice, which are deficient in lymphoid tissues, including nasopharynx-associated lymphoid tissue, had a similar frequency of M cell clusters in their nasal epithelia to that of their littermates, Id2(+/-) mice. The titers of Ag-specific Abs were as high in Id2(-/-) mice as in Id2(+/-) mice after nasal immunization with recombinant Salmonella-ToxC or group A Streptococcus, indicating that respiratory M cells were capable of sampling inhaled bacterial Ag to initiate an Ag-specific immune response. Taken together, these findings suggest that respiratory M cells act as a nasopharynx-associated lymphoid tissue-independent alternative gateway for Ag sampling and subsequent induction of Ag-specific immune responses in the upper respiratory tract.


Assuntos
Antígenos de Bactérias/administração & dosagem , Tecido Linfoide/imunologia , Mucosa Nasal/imunologia , Nasofaringe/imunologia , Lectinas de Plantas/administração & dosagem , Conchas Nasais/imunologia , Administração por Inalação , Animais , Antígenos de Bactérias/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Contagem de Linfócitos , Tecido Linfoide/microbiologia , Tecido Linfoide/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Cavidade Nasal/imunologia , Cavidade Nasal/microbiologia , Cavidade Nasal/ultraestrutura , Mucosa Nasal/microbiologia , Mucosa Nasal/ultraestrutura , Nasofaringe/microbiologia , Nasofaringe/ultraestrutura , Lectinas de Plantas/biossíntese , Lectinas de Plantas/imunologia , Salmonella typhimurium/imunologia , Streptococcus pyogenes/imunologia , Conchas Nasais/microbiologia , Conchas Nasais/ultraestrutura , Ulex/imunologia , Aglutininas do Germe de Trigo/imunologia
15.
J Gen Virol ; 91(Pt 6): 1478-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20164259

RESUMO

When Ebola virus nucleoprotein (NP) is expressed in mammalian cells, it assembles into helical structures. Here, the recombinant NP helix purified from cells expressing NP was characterized biochemically and morphologically. We found that the recombinant NP helix is associated with non-viral RNA, which is not protected from RNase digestion and that the morphology of the helix changes depending on the environmental salt concentration. The N-terminal 450 aa residues of NP are sufficient for these properties. However, digestion of the NP-associated RNA eliminates the plasticity of the helix, suggesting that this RNA is an essential structural component of the helix, binding to individual NP molecules via the N-terminal 450 aa. These findings enhance our knowledge of Ebola virus assembly and understanding of the Ebola virus life cycle.


Assuntos
Ebolavirus/fisiologia , Nucleoproteínas/metabolismo , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Ebolavirus/química , Humanos , Microscopia Eletrônica de Transmissão , Nucleoproteínas/química , Ligação Proteica , Estrutura Secundária de Proteína
16.
Mol Pharmacol ; 77(2): 262-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19903825

RESUMO

Nitrogen-containing bisphosphonates are pyrophosphate analogs that have long been the preferred prescription for treating osteoporosis. Although these drugs are considered inhibitors of prenylation and are believed to exert their effects on bone resorption by disrupting the signaling pathways downstream of prenylated small GTPases, this explanation seems to be insufficient. Because other classes of prenylation inhibitors have recently emerged as potential antiviral therapeutic agents, we first investigated here the effects of bisphosphonates on simian virus 40 and adenovirus infections and, to our surprise, found that viral infections are suppressed by bisphosphonates through a prenylation-independent pathway. By in-house affinity-capture techniques, dynamin-2 was identified as a new molecular target of bisphosphonates. We present evidence that certain bisphosphonates block endocytosis of adenovirus and a model substrate by inhibiting GTPase activity of dynamin-2. Hence, this study has uncovered a previously unknown mechanism of action of bisphosphonates and offers potential novel use for these drugs.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Difosfonatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Dinamina II/fisiologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Osteoporose/metabolismo , Osteoporose/patologia , Animais , Conservadores da Densidade Óssea/farmacologia , Bovinos , Linhagem Celular , Difosfonatos/farmacologia , Sistemas de Liberação de Medicamentos/tendências , Dinamina II/antagonistas & inibidores , Células HeLa , Humanos , Camundongos , Osteoporose/tratamento farmacológico , Prenilação de Proteína/efeitos dos fármacos , Prenilação de Proteína/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
J Virol ; 83(9): 4520-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19244335

RESUMO

Herpes simplex virus 1 (HSV-1) enters cells either via fusion of the virion envelope and host cell plasma membrane or via endocytosis, depending on the cell type. In the study reported here, we investigated a viral entry pathway dependent on the paired immunoglobulin-like type 2 receptor alpha (PILRalpha), a recently identified entry coreceptor for HSV-1 that associates with viral envelope glycoprotein B (gB). Experiments using inhibitors of endocytic pathways and ultrastructural analyses of Chinese hamster ovary (CHO) cells transduced with PILRalpha showed that HSV-1 entry into these cells was via virus-cell fusion at the cell surface. Together with earlier observations that HSV-1 uptake into normal CHO cells and those transduced with a receptor for HSV-1 envelope gD is mediated by endocytosis, these results indicated that expression of PILRalpha produced an alternative HSV-1 entry pathway in CHO cells. We also showed that human and murine PILRalpha were able to mediate entry of pseudorabies virus, a porcine alphaherpesvirus, but not of HSV-2. These results indicated that viral entry via PILRalpha appears to be conserved but that there is a PILRalpha preference among alphaherpesviruses.


Assuntos
Alphaherpesvirinae/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Internalização do Vírus , Trifosfato de Adenosina/biossíntese , Alphaherpesvirinae/genética , Alphaherpesvirinae/ultraestrutura , Animais , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Endocitose , Leucócitos Mononucleares/imunologia , Receptores de Lipopolissacarídeos/imunologia , Glicoproteínas de Membrana/genética , Microscopia Eletrônica , Ligação Proteica , Receptores Imunológicos/genética , Transgenes
18.
J Biomed Mater Res A ; 91(1): 84-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18767063

RESUMO

Bone regenerative medicine via tissue engineering is expected to be an alternative treatment for conventional autogenous bone graft, as it is less invasive. One of the best triads for bone engineering is bone marrow stromal cells, calcium phosphate ceramics, and bone morphogenetic protein (BMP). However, the optimal mixing conditions for BMP-induced osteoblasts and ceramic granules remain unclear. Therefore, we investigated the effect of the mixing conditions for cell scaffolds on the bone-forming potential. The cells were mixed with beta-tricalcium phosphate (beta-TCP) granules followed by osteoblast induction with recombinant human BMP-2 (rhBMP-2) (first mixture), or were first induced with rhBMP-2 on plastic dishes and then mixed with the beta-TCP granules (last mixture) just prior to the operation. Both the first and last mixtures were transplanted into nude mice subcutaneously, with the amount of bone formation analyzed histomorphometrically. In addition, cell numbers and alkaline phosphatase (ALP) activity before transplantation was determined in both the mixtures. In vitro analyses revealed that cell numbers were greater in the last mixture, whereas ALP activity was greater in the first mixture. In vivo analyses revealed that the first mixture was much more osteogenic than the last mixture with respect to new bone formation and osteocalcin synthesis. These data suggest that cell-scaffold mixing conditions have a significant influence on the bone-forming capacity via bone engineering and that first mixture might be the optimal condition for rhBMP-2-induction of human osteoblasts.


Assuntos
Células da Medula Óssea/citologia , Proteínas Morfogenéticas Ósseas/metabolismo , Fosfatos de Cálcio/química , Osteoblastos/citologia , Osteogênese , Proteínas Recombinantes/metabolismo , Engenharia Tecidual , Fator de Crescimento Transformador beta/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Contagem de Células , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteoblastos/metabolismo , Osteoblastos/transplante , Osteocalcina/metabolismo , Células Estromais/citologia , Alicerces Teciduais/química
19.
Mol Cell Neurosci ; 38(2): 203-12, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18403215

RESUMO

The supportive functions of oligodendrocytes are required for the survival and development of axons, ensuring the organization of highly specialized neuronal networks in brain. Although the molecules that regulate oligodendrocyte differentiation in vitro have been identified, their roles in vivo are largely uncertain. Here we report that fyn deficiency on the C57BL/6 genetic background resulted in premature death, showing severe hydrocephalus with neonatal onset. One week after birth, fyn-deficient mice showed enlarged lateral ventricles with thinner cerebral cortices and degenerating axons in the corpus callosum. In addition, before the onset of myelination, the number of oligodendrocytes was reduced and their morphogenesis was impaired in the cerebral cortex. These results demonstrate that Fyn is essential for normal brain development and suggest that defects in oligodendrocyte development cause degeneration of cortical axons and subsequent hydrocephalus in fyn-deficient mice.


Assuntos
Hidrocefalia/genética , Hidrocefalia/patologia , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Quinases da Família src/genética , Animais , Animais Recém-Nascidos , Axônios/patologia , Comunicação Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Ventrículos Cerebrais/patologia , Gliose/patologia , Óperon Lac , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Bainha de Mielina/patologia , Proteínas de Neoplasias , Degeneração Neural/genética , Degeneração Neural/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Tirosina Quinases , Índice de Gravidade de Doença , Quinases da Família src/metabolismo
20.
J Virol ; 82(11): 5198-211, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18353954

RESUMO

We report here the construction of a triply fluorescent-tagged herpes simplex virus 1 (HSV-1) expressing capsid protein VP26, tegument protein VP22, and envelope protein gB as fusion proteins with monomeric yellow, red, and cyan fluorescent proteins, respectively. The recombinant virus enabled us to monitor the dynamics of these capsid, tegument, and envelope proteins simultaneously in the same live HSV-1-infected cells and to visualize single extracellular virions with three different fluorescent emissions. In Vero cells infected by the triply fluorescent virus, multiple cytoplasmic compartments were found to be induced close to the basal surfaces of the infected cells (the adhesion surfaces of the infected cells on the solid growth substrate). Major capsid, tegument, and envelope proteins accumulated and colocalized in the compartments, as did marker proteins for the trans-Golgi network (TGN) which has been implicated to be the site of HSV-1 secondary envelopment. Moreover, formation of the compartments was correlated with the dynamic redistribution of the TGN proteins induced by HSV-1 infection. These results suggest that HSV-1 infection causes redistribution of TGN membranes to form multiple cytoplasmic compartments, possibly for optimal secondary envelopment. This is the first real evidence for the assembly of all three types of herpesvirus proteins-capsid, tegument, and envelope membrane proteins-in TGN.


Assuntos
Capsídeo/metabolismo , Produtos do Gene env/metabolismo , Herpesvirus Humano 1/metabolismo , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Produtos do Gene env/genética , Genes Reporter/genética , Genoma Viral/genética , Herpesvirus Humano 1/genética , Humanos , Transporte Proteico , Coelhos , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA