Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 242: 111351, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428949

RESUMO

The genus Echinococcus of cestode parasites includes important pathogens of humans and livestock animals. Transcriptomic and genomic studies on E. granulosus and E. multilocularis uncovered striking expansion of monodomain Kunitz proteins. This expansion is accompanied by the specialization of some family members away from the ancestral protease inhibition function to fulfill cation channel blockade functions. Since cation channels are involved in immune processes, we tested the effects on macrophage physiology of two E. granulosus Kunitz-type inhibitors of voltage-activated cation channels (Kv) that are close paralogs. Both inhibitors, EgKU-1 and EgKU-4, inhibited production of the Th1/Th17 cytokine subunit IL-12/23p40 by macrophages stimulated with the TLR4 agonist LPS. In addition, EgKU-4 but not EgKU-1 inhibited production of the inflammatory cytokine IL-6. These activities were not displayed by EgKU-3, a family member that is a protease inhibitor without known activity on cation channels. EgKU-4 potently inhibited macrophage proliferation in response to M-CSF, whereas EgKU-1 displayed similar activity but with much lower potency, similar to EgKU-3. We discuss structural differences, including a heavily cationic C-terminal extension present in EgKU-4 but not in EgKU-1, that may explain the differential activities of the two close paralogs.


Assuntos
Echinococcus granulosus/química , Proteínas de Helminto/farmacologia , Interleucina-12/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas de Helminto/isolamento & purificação , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Proteínas Secretadas Inibidoras de Proteinases/isolamento & purificação , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
2.
J Biol Chem ; 292(4): 1145-1159, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27923813

RESUMO

Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and ß-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the ß- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to ß-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA signaling actions.


Assuntos
Ácido Linoleico/química , Nitrocompostos/química , Albumina Sérica/química , Transdução de Sinais , Compostos de Sulfidrila/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA