RESUMO
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 µM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Assuntos
Antineoplásicos , Indóis , Inibidores de Proteínas Quinases , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Indóis/química , Indóis/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridonas/química , Piridonas/farmacologia , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismoRESUMO
Background and purpose: Malaria and cancer are two major health issues affecting millions of lives annually. Maltol complexes and derivatives have been extensively investigated as chemotherapeutic and antimalarial activities. In this study, the design, synthesis, biological activities, and docking study of a novel series of pyridinones derivatives were reported. Experimental approach: The chemical structures of synthesized compounds were approved by FTIR, 1HNMR, 13CNMR, and mass spectroscopies. The antimalarial activity was evaluated through ß-hematin inhibition assay and the cytotoxicity activities were evaluated against PC12 and fibroblast cell lines via MTT and cell uptake assays. To theoretically investigate the ability of compounds to inhibit hemozoin formation, the synthesized compounds were docked in a heme sheet to explore their binding mode and possible interactions. Findings/Results: ß-Hematin inhibition assay showed acceptable activity for 7f, 7c, and 7d compounds and the molecular docking study showed 7h and 7f had effective interactions with the heme sheet. The cytotoxic study revealed compound 4b (IC50 = 18 µM) was significantly more active against PC12 cells than docetaxel (IC50 = 280 µM). The observations of cell uptake images were also shown both cell penetration and monitoring potential of synthesized compounds. Conclusion and implications: The compounds showed a moderate ability to inhibition of heme polymerization and also good interaction with heme through molecular docking was observed. Additionally, some of them have a good cytotoxic effect on the study2 cell line. So further study on these compounds can lead to compounds that can be considered as anti-malarial and/or anticancer agents.
RESUMO
Epidermal growth factor and vascular endothelial growth factor-2 are important targets of tyrosine kinase for the treatment of various cancerous diseases. Combination of inhibition of both targets to produce synergy in the signal pathway is a critical approach to identify novel tyrosine kinase inhibitors. In this study, a series of new compounds derived from the 4-aminoquinoline as dual inhibitors were synthesized. The obtained results of cytotoxicity assay against human carcinoma cell lines indicated 0.8⯵M for 4c against A549 showing its high efficiency in comparison to erlotinib. Pharmacophore modeling as a structure-based method was investigated on dual inhibitors and 4c which was compared with co-crystallized in the active site of EGFR and VEGFR-2. They have shown the same binding orientation as vandetanib, erlotinib and sorafenib. Molecular dynamics simulation results approved that Met769, Lys721, Asp1046, and Lys868 are key residues in two binding sites for dual activity. Ala1050 and Pro968 were identified as new amino acid interaction sites for dual inhibition. 4c showed more favorable stability than vandetanib in VEGFR-2 receptor for a 50â¯ns dynamic simulation. The high correlation between essential pharmacophoric features of designed compounds and lead inhibitors interactions provided a deeper insight into the structural basis of 4-aminoquinoline inhibition.
Assuntos
Receptores ErbB/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quinolinas/antagonistas & inibidores , Quinolinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células A549 , Aminoquinolinas/antagonistas & inibidores , Aminoquinolinas/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Receptores ErbB/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Humanos , Piperidinas/farmacologia , Conformação Proteica , Quinazolinas/farmacologia , Sorafenibe/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacosRESUMO
In this work, two novel series of indole-thiosemicarbazone derivatives were designed, synthesized, and evaluated for their cytotoxic activity against MCF-7, A-549, and Hep-G2â cell lines in comparison to etoposide and colchicine as the reference drugs. Generally, the synthesized compounds showed better cytotoxicity towards A-549 and Hep-G2 than MCF-7. Among them, (2E)-2-{[2-(4-chlorophenyl)-1H-indol-3-yl]methylidene}-N-(4-methoxyphenyl)hydrazinecarbothioamide (8l) was found to be the most potent compound against A-549 and Hep-G2, at least three times more potent than etoposide. The morphological analysis by the acridine orange/ethidium bromide double staining test and flow cytometry analysis indicated that compound 8l induced apoptosis in A-549 cells. Moreover, molecular docking methodology was exploited to elucidate the details of molecular interactions of the studied compounds with putative targets.
Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Tiossemicarbazonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/químicaRESUMO
The purpose of this research was to optimize a new method for preconcentration and determination of trace iron concentrations in aqueous solutions. For this purpose, a newly synthesized ligand, 3-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) benzoic acid (3-OH-3-MOPBA), was used in the dispersive liquid-liquid microextraction (DLLME) method coupled with UV-vis spectroscopy. The experiments considering input variables of extractant volume, disperser volume, salt concentration, and pH were designed with the aid of central composite design (CCD). The results were analyzed using response surface methodology (RSM). The limit of detection (LOD) was found to be 4.0 µg L-1 under the optimized conditions. A calibration curve with a good linearity (R2 = 0.9986) was obtained over the concentration range of 15-800 µg L-1. The relative standard deviations (RSD) were found to be around 2.1% (n = 7). The main advantages of the developed method are simple application, environment friendly, short time, and low cost which makes this method to be applied routinely for measuring iron in various water samples.
Assuntos
Quelantes/química , Sucos de Frutas e Vegetais/análise , Ferro/análise , Microextração em Fase Líquida , Poluentes Químicos da Água/química , Quelantes/síntese química , Espectrofotometria Ultravioleta , Água/químicaRESUMO
The aim of this study was to establish a new dispersive liquid-liquid microextraction (DLLME) technique for the determination of iron concentration in aqueous solutions and fruit juices based on the reaction between iron and 3-hydroxy-1-(3-hydroxyphenyl)-2-methylpyridin-4(1H)-one (3-OH-PMPO) as a chelating agent. A central composite design (CCD) was applied to optimize the effects of independent parameters (pH, volume of disperser solvent and extractant solvent and chelating agent concentration) on extraction efficiency. Under the optimized conditions, the analytical curve is linear in a concentration range of 10-750⯵gL-1 with a detection limit of 5⯵gL-1. The relative standard deviation (RSD) for ten repeated determinations of iron concentrations at 40 and 200⯵gL-1 was calculated to be 4.2% and 1.2%, respectively. Relative recovery of iron in several water samples was investigated and the average was obtained in the range of 91-108%.
Assuntos
Quelantes/química , Ferro/análise , Microextração em Fase Líquida/métodos , Água/análise , Concentração de Íons de Hidrogênio , Limite de Detecção , Piridinas/química , Solventes , Espectrofotometria Ultravioleta , Poluentes Químicos da Água/análiseRESUMO
OBJECTIVES: Hybridization of bioactive natural and synthetic compounds is one of the most promising novel approaches for the design of hit and lead compounds with new molecular structures. In this investigation, a series of novel hybrid structures bearing quinazolinone, benzofuran and imidazolium moieties were designed and synthesized. MATERIALS AND METHODS: Novel hybrid compounds were prepared and their structures were characterized by spectral and analytical data. In order to evaluate the biological activities, the synthesized hybrid compounds were studied for in vitro antibacterial activity against three Gram positive bacteria (Staphylococcus aureu, Bacillus subtilis, Listeria monocitogenes) and three Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella entritidis) and also, Candida albicans as one yeast-like fungi strain. Cytotoxic activities of the synthesized compounds were also evaluated by the MTT assay in the human breast cancer cell line (MCF-7) and finally docking studies of cytotoxic derivatives were performed on aromatase enzyme. RESULTS: The results of antimicrobial activity showed that compound 14e, with two halogen atoms on quinazolinone and benzofuran was the most active against all the tested strains of microorganisms with the MIC value 16-128 µg/ml. Some of the tested compounds showed good cytotoxicity on MCF-7, and compound 14c with IC50=0.59 micromolar (µM) was found to be the most cytotoxic compound among the studied hybrid derivatives. The docking analysis showed acceptable binding interactions for these compounds. CONCLUSION: Based on the obtained results, the hybrid derivatives of quinazolinone, benzofuran and imidazolium could be regarded as efficient candidates for further molecular developments of anticancer and antimicrobial agents.
RESUMO
Cytotoxic and antimicrobial agents structurally based on quinazolinone, benzofuran and imidazole pharmacophores, have been designed and synthesized. Spectral (IR, 1 H-NMR) and elemental analysis data established the structures of these novel 3-[1-(1-benzofuran-2-yl)-2-(4-oxoquinazolin-3(4H)-yl)ethyl]-1-methyl-1H-imidazol-3-ium chloride hybrid derivatives. All the synthesized compounds were evaluated for in vitro cytotoxicity and antimicrobial activities. Cytotoxic evaluation using MTT assay revealed that compounds 12c, 12g and 12i exhibited significant cytotoxicity with IC50 values 1, 1, and 0.57 µm on this cell line, respectively. Biological activity of the synthesized compounds as antibacterial agent were also evaluated against three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram-positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast-like fungi (Candida albicans) strains. All compounds 12a - 12i showed slightly higher activity against Gram-positive bacteria than the Gram-negative one. Among the nine new compounds screened, 3-[1-(5-bromo-1-benzofuran-2-yl)-2-(6-chloro-4-oxoquinazolin-3(4H)-yl)ethyl]-1-methyl-1H-imidazol-3-ium chloride (12e) has pronounced higher antimicrobial activity against all tested strains. These results demonstrated potential importance of molecular hybridization in the development of new lead molecules with major cytotoxicity and antimicrobial activity.
Assuntos
Antibacterianos/síntese química , Antineoplásicos/síntese química , Compostos Heterocíclicos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Benzofuranos/química , Candida albicans/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Desenho de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Imidazóis/química , Células MCF-7 , Quinazolinonas/químicaRESUMO
Iron overload is a clinical problem which can be prevented by using iron chelating agents. An alternative method of relieving iron overload is to reduce iron absorption from the intestine by administering specific iron chelating agents, which can bind iron to form nonabsorbable complexes. Based on this strategy, a series of polymeric ligands containing the chelating moiety 3-hydroxypyridin-4-ones (HPOs) were synthesized. The synthetic route involves the benzylation of hydroxyl group of (2-methyl-3-hydroxypyran-4-one (maltol) and conversion of benzylated maltol to 3-benzyloxypyridin-4-one derivatives by using three suitable primary amines (2,6-diaminohexanoic acid (lysine) and 1,6-diaminohexane and 5-aminopentanol). The resulted compounds incorporated into polymer by copolymerization with acryloyl chloride using 2, 2'-azobisisobutyronitrile (AIBN) as the initiator. Finally, the benzyl groups of polymers were removed by catalytic hydrogenation (Pd/C). In this work, three final polymers of HPO derivatives namely poly-2-propylamido-6-(3- hydroxy -1,4-dihydro-2-methy-4-oxopyrid-1-yl) hexanoic acid, 6-(3-hydroxy-1, 4-dihydro-2-methyl-4-oxopyrid-1-yl) hexyl-1-polypropylamide and 5-(3-hydroxy-1-,4-dihydro-2-methyl-4-oxopyrid-1-yl)-1-polyacrylate pentane were synthesized. Identification and structural elucidation of compounds were achieved by proton nuclear magnetic resonance ((1)H NMR), carbon nuclear magnetic resonance ((13)C NMR) and infrared (IR) spectroscopy.
RESUMO
A computational procedure was performed on some indenopyrazole derivatives. Two important procedures in computational drug discovery, namely docking for modeling ligand-receptor interactions and quantitative structure activity relationships were employed. MIA-QSAR analysis of the studied derivatives produced a model with high predictability. The developed model was then used to evaluate the bioactivity of 54 proposed indenopyrazole derivatives. In order to confirm the obtained results through this ligand-based method, docking was performed on the selected compounds. An ADME-Tox evaluation was also carried out to search for more suitable compounds. Satisfactory bioactivities and ADME-Tox proï¬les for two of the compounds, namely 62 and S13, propose that further studies should be performed on such devoted chemical structures.
Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Pirazóis/química , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química , Calibragem , Ligantes , Simulação de Acoplamento MolecularRESUMO
Selective A(2B) receptor antagonists and agonists may play a role in important pathologies such as gastrointestinal, neurological (i.e., Alzheimer disease and dementia) and hypersensitive disorders (i.e., asthma), diabetes, atherosclerosis, restenosis and cancer. Hence, it is regarded as a good target for the development of clinically useful agents. In this study, the effects of lipid bilayer, N-acetylglucosamine and S-palmitoyl on the dynamic behavior of A(2B)AR model is explored. Homology modeling, molecular docking and molecular dynamics simulations were performed to explore structural features of A(2B)AR in the presence of lipid bilayer. Twenty ns MD simulation was performed on the constructed model inserted in a hydrated lipid bilayer to examine stability of the best model. OSIP339391 as the most potent antagonist was docked in the active site of the model. Another MD simulation was performed on the ligand-protein complex to explore effects of the bilayer on this complex. A similar procedure was performed for the modified protein with N-acetylglucosamine and S-palmitoyl moieties in its structure. Phe173 and Glu174 located in EL2 were determined to be involved in ligand-receptor interactions through π-π stacking and hydrogen bonding. Asn254 was crucial to form hydrogen-bonding. The reliability of the model was assessed through docking using both commercial and synthetic antagonists and an r(2) of 0.70 was achieved. Our results show that molecular dynamics simulations of palmitoylated/glycosylated, membrane-integrated human A(2B)AR in its native environment is a possible approach and this model can be used for designing potent and selective A(2B)AR antagonists.