Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071312

RESUMO

During embryonic development the placental vasculature acts as a major hematopoietic niche, where endothelial to hematopoietic transition ensures emergence of hematopoietic stem cells (HSCs). However, the molecular mechanisms that regulate the placental hematoendothelial niche are poorly understood. Using a parietal trophoblast giant cell (TGC)-specific knockout mouse model and single-cell RNA-sequencing, we show that the paracrine factors secreted by the TGCs are critical in the development of this niche. Disruptions in the TGC-specific paracrine signaling leads to the loss of HSC population and the concomitant expansion of a KDR+/DLL4+/PROM1+ hematoendothelial cell-population in the placenta. Combining single-cell transcriptomics and receptor-ligand pair analyses, we also define the parietal TGC-dependent paracrine signaling network and identify Integrin signaling as a fundamental regulator of this process. Our study elucidates novel mechanisms by which non-autonomous signaling from the primary parietal TGCs maintain the delicate placental hematopoietic-angiogenic balance and ensures embryonic and extraembryonic development.

2.
PLoS Pathog ; 20(3): e1011998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530845

RESUMO

Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/genética , Linfócitos B , Latência Viral , Transativadores/genética , Ativação Viral , Regulação Viral da Expressão Gênica
3.
Pathol Res Pract ; 253: 154970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056136

RESUMO

The role of epigenetic alteration in prostate cancer pathogenesis was reported. We aimed to analyze dysregulation of DNA methylase (DNA methyl transferase/DNMT) and demethylase (ten eleven translocase/TET) and the associated interplay between them during prostate tumorigenesis. Promoter methylation and RNA/protein expression of selected DNMT and TETs were analysed in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Genomic 5-hydroxymethylcytosine (5hmC) level was detected and correlated with DNMT and TET proteins. Clinicopathological association of molecular data was done. Our data revealed a very low frequency of promoter methylation for DNMT1 (5-3% and high frequency for TET1 (22-38%), TET2 (68-90 %), and TET3 (43-32 %) in BPH and PCa. The promoter methylation of DNMT1 (p = 0.019) showed a significantly decreasing trend, while that of TET1 (p = 0.0005) and TET2 (p < 0.0001) showed an increasing trend from normal prostate to BPH to PCa, indicating their epigenetic dysregulation during prostate tumorigenesis. RNA/protein overexpression of DNMT1 and reduced expression of TET1 and TET2 in PCa compared to BPH were associated with the promoter methylation status of genes. The 5hmC level was significantly lower in PCa than in BPH and correlated negatively with DNMT1 but positively with TET1 and TET2 proteins, suggesting dysregulation of DNA methylase and de-methylase activities during prostate tumorigenesis. Lastly, tumors having methylated TET1 and TET2 promoters showed advanced clinicopathological features (a higher PSA level/Gleason score) and increased risk of bone metastasis. In conclusion, DNMT1 upregulation and epigenetic silencing of TET1 and TET2 was seen during PCa development. TET1 and TET2 promoter methylation has prognostic importance.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Prognóstico , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Metilação de DNA/genética , Epigênese Genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , DNA , RNA/metabolismo , Oxigenases de Função Mista/metabolismo
4.
J Biochem ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140941

RESUMO

Actively treadmilling FtsZ acts as the pivotal scaffold for bacterial cell divisome components providing them with a circumferential ride along the site of future division. FtsZ from slow growing Helicobacter pylori (HpFtsZ), a class I carcinogen which thrives abundantly in the acidic environment is poorly understood. We studied HpFtsZ as a function of pH, cations and time and compared it with well-studied E. coli FtsZ (EcFtsZ). HpFtsZ shows pH dependent GTPase activity which is inhibited under acidic conditions. Mg+2 ions play an indispensable role in its GTPase activity, however, higher Mg+2 levels negatively affect its activity. As compared to EcFtsZ, HpFtsZ exhibits lower and slower nucleotide hydrolyzing activity. Molecular Dynamics Simulation studies of FtsZ reveal that GTP binding induces a rewiring of the hydrogen bond network which results in reduction of the binding cleft volume leading to the spontaneous release of GTP. The GTPase activity is linked to the extent of reduction in the binding cleft volume, which is also supported by the binding free energy analysis. Evidently, HpFtsZ is a pH sensitive GTPase with low efficiency that may reflect on the overall slow growth rate of H. pylori.

5.
Front Cell Infect Microbiol ; 12: 894777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865814

RESUMO

Apart from other risk factors, chronic inflammation is also associated with the onset of Prostate Cancer (PCa), wherein pathogen infection and tissue microbiome dysbiosis are known to play a major role in both inflammatory response and cancer development. However, except for a few studies, the link between microbes and PCa remained poorly understood. To explore the potential microbiome signature associated with PCa in Indian patients, we investigated differential compositions of commensal bacteria among patients with benign prostatic hyperplasia (BPH) and PCa using 16S rRNA amplicon sequencing followed by qPCR analyses using two distinct primer sets. Using two independent cohorts, we show that Prevotella copri, Cupriavidus campinensis, and Propionibacterium acnes represent the three most abundant bacteria in diseased prostate lesions. LEfSe analyses identified that while Cupriavidus taiwanensis and Methylobacterium organophilum are distinctly elevated in PCa samples, Kocuria palustris and Cellvibrio mixtus are significantly enriched in BPH samples. Furthermore, we identify that a number of human tumor viruses, including Epstein-Barr virus (EBV) and hepatitis B virus (HBV), along with two high-risk human papillomaviruses - HPV-16 and HPV-18, are significantly associated with the PCa development and strongly correlated with PCa bacterial signature. The study may thus offer to develop a framework for exploiting this microbial signature for early diagnosis and prognosis of PCa development.


Assuntos
Infecções por Vírus Epstein-Barr , Hiperplasia Prostática , Neoplasias da Próstata , Herpesvirus Humano 4/genética , Humanos , Masculino , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/genética , RNA Ribossômico 16S/genética
6.
Bioorg Med Chem ; 37: 116112, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33751939

RESUMO

Natural compounds isolated from different medicinal plants remain one of the major resources of anticancer drugs due to their enormous chemical diversity. Studies suggested therapeutic potential for various tanshinones, key bioactive lipophilic compounds from the root extracts of Salvia miltiorrhiza Bunge, against multiple cancers including breast carcinoma. We designed, synthesized and evaluated anti-cancer properties of a series of condensed and doubly condensed furophenanthraquinones of tanshinone derivatives on two breast cancer lines - MCF7 and MDA-MB-231. We identified two thiophene analogues - compounds 48 and 52 with greater anti-proliferative efficiency (~4 fold) as compared to the natural tanshinones. Mechanistically, we showed that both compounds induced autophagy mediated cell death and partial but significant restoration of cell death in the presence of autophagy inhibitor further supported this notion. Both compounds transcriptionally activated several autophagy genes responsible for autophagosome formation along with two death regulators - GADD34 and CHOP for inducing cell death. Altogether, our studies provide strong evidence to support compounds 48 and 52 as promising leads for further development as anticancer agents through modulating autophagy mechanism.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Tiofenos/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Tiofenos/síntese química , Resposta a Proteínas não Dobradas/efeitos dos fármacos
7.
Front Oncol ; 11: 614448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708627

RESUMO

Infection with specific pathogens and alterations in tissue commensal microbial composition are intricately associated with the development of many human cancers. Likewise, dysbiosis of oral microbiome was also shown to play critical role in the initiation as well as progression of oral cancer. However, there are no reports portraying changes in oral microbial community in the patients of Indian subcontinent, which has the highest incidence of oral cancer per year, globally. To establish the association of bacterial dysbiosis and oral squamous cell carcinoma (OSCC) among the Indian population, malignant lesions and anatomically matched adjacent normal tissues were obtained from fifty well-differentiated OSCC patients and analyzed using 16S rRNA V3-V4 amplicon based sequencing on the MiSeq platform. Interestingly, in contrast to the previous studies, a significantly lower bacterial diversity was observed in the malignant samples as compared to the normal counterpart. Overall our study identified Prevotella, Corynebacterium, Pseudomonas, Deinococcus and Noviherbaspirillum as significantly enriched genera, whereas genera including Actinomyces, Sutterella, Stenotrophomonas, Anoxybacillus, and Serratia were notably decreased in the OSCC lesions. Moreover, we demonstrated HPV-16 but not HPV-18 was significantly associated with the OSCC development. In future, with additional validation, this panel could directly be applied into clinical diagnostic and prognostic workflows for OSCC in Indian scenario.

8.
PLoS Pathog ; 16(2): e1008105, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092124

RESUMO

Epstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins-EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lysosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, induces apoptotic cell death and increases transcriptional activation of both latent and lytic gene expression which further promotes viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Leupeptinas/farmacologia , Lisossomos/metabolismo , Proteínas Oncogênicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Animais , Antígenos Nucleares do Vírus Epstein-Barr/genética , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Lisossomos/genética , Camundongos , Proteínas Oncogênicas/genética , Complexo de Endopeptidases do Proteassoma/genética
9.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971472

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.


Assuntos
Linfócitos B/virologia , Carcinogênese , Herpesvirus Humano 4/genética , Linfoma de Células B/virologia , Linhagem Celular , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Humanos , Hospedeiro Imunocomprometido , Linfoma de Células B/genética , Neoplasias , RNA não Traduzido , Latência Viral
10.
PLoS Pathog ; 15(1): e1007514, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615685

RESUMO

EBV latent antigen 3C (EBNA3C) is essential for EBV-induced primary B-cell transformation. Infection by EBV induces hypermethylation of a number of tumor suppressor genes, which contributes to the development of human cancers. The Ras association domain family isoform 1A (RASSF1A) is a cellular tumor suppressor, which regulates a broad range of cellular functions, including apoptosis, cell-cycle arrest, mitotic arrest, and migration. However, the expression of RASSF1A is lost in many human cancers by epigenetic silencing. In the present study, we showed that EBNA3C promoted B-cell transformation by specifically suppressing the expression of RASSF1A. EBNA3C directly interacted with RASSF1A and induced RASSF1A degradation via the ubiquitin-proteasome-dependent pathway. SCFSkp2, an E3-ubiquitin ligase, was recruited by EBNA3C to enhance RASSF1A degradation. Moreover, EBNA3C decreased the transcriptional activity of RASSF1A promoter by enhancing its methylation through EBNA3C-mediated modulation of DNMTs expression. EBNA3C also inhibited RASSF1A-mediated cell apoptosis, disrupted RASSF1A-mediated microtubule and chromosomal stability, and promoted cell proliferation by upregulating Cyclin D1 and Cyclin E expression. Our data provides new details, which sheds light on additional mechanisms by which EBNA3C can induce B-cell transformation. This will also facilitate the development of novel therapeutic approaches through targeting of the RASSF1A pathway.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Supressoras de Tumor/genética , Antígenos Virais/genética , Apoptose , Linfócitos B/metabolismo , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Viral/genética , Metilação de DNA/genética , Regulação para Baixo , Epigênese Genética/genética , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Ativação Linfocitária/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Cell Death Dis ; 9(6): 605, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789559

RESUMO

Epstein-Barr virus (EBV) oncoprotein EBNA3C is indispensable for primary B-cell transformation and maintenance of lymphoblastoid cells outgrowth. EBNA3C usurps two putative cellular pathways-cell-cycle and apoptosis, essentially through modulating ubiquitin-mediated protein-degradation or gene transcription. In cancer cells, these two pathways are interconnected with autophagy,-a survival-promoting catabolic network in which cytoplasmic material including mis/un-folded protein aggregates and damaged organelles along with intracellular pathogens are degraded and recycled in lysosomal compartments. Studies have shown that tumor viruses including EBV can manipulate autophagy as a survival strategy. Here, we demonstrate that EBNA3C elevates autophagy, which serves as a prerequisite for apoptotic inhibition and maintenance of cell growth. Using PCR based micro-array we show that EBNA3C globally accelerates autophagy gene transcription under growth limiting conditions. Reanalyzing the ENCODE ChIP-sequencing data (GSE52632 and GSE26386) followed by ChIP-PCR demonstrate that EBNA3C recruits several histone activation epigenetic marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) for transcriptional activation of autophagy genes, notably ATG3, ATG5, and ATG7 responsible for autophagosome formation. Moreover, under growth limiting conditions EBNA3C further stimulates the autophagic response through upregulation of a number of tumor suppressor genes, notably cyclin-dependent kinase inhibitors-CDKN1B (p27Kip1) and CDKN2A (p16INK4a) and autophagy mediated cell-death modulators-DRAM1 and DAPK1. Together our data highlight a new role of an essential EBV oncoprotein in regulating autophagy cascade as a survival mechanism and offer novel-targets for potential therapeutic expansion against EBV induced B-cell lymphomas.


Assuntos
Autofagia/genética , Linfócitos B/patologia , Epigênese Genética , Herpesvirus Humano 4/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Apoptose/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linfócitos B/metabolismo , Ciclo Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Citoproteção , Células HEK293 , Histonas/metabolismo , Humanos , Modelos Biológicos
12.
Biomolecules ; 6(4)2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27886133

RESUMO

Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV), the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers-both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV-host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Linfoma de Células B/virologia , Epigênese Genética , Infecções por Vírus Epstein-Barr/epidemiologia , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Linfoma de Células B/genética , Proteínas Virais/genética
13.
PLoS Pathog ; 12(8): e1005844, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27548379

RESUMO

Epstein-Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies.


Assuntos
Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F6/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Transcrição Gênica , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F6/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos
14.
Front Microbiol ; 7: 457, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092119

RESUMO

Epstein-Barr virus (EBV) is highly ubiquitous in human population and establishes a lifelong asymptomatic infection within the infected host unless the immune system is compromised. Following initial infection in the oropharyngeal epithelial cells, EBV primarily infects naive B-lymphocytes and develops a number of B-cell lymphomas particularly in immune-deficient individuals. In vitro, EBV can also infect and subsequently transform quiescent B-lymphocytes into continuously proliferating lymphoblastoid cell lines (LCLs) resembling EBV-induced lymphoproliferative disorders in which a subset of latent transcripts are detected. Genetic studies revealed that EBNA-3 family comprising of three adjacent genes in the viral genome-EBNA-3A and -3C, but not -3B, are critical for B-cell transformation. Nevertheless, all three proteins appear to significantly contribute to maintain the overall proliferation and viability of transformed cells, suggesting a critical role in lymphoma development. Apart from functioning as important viral transcriptional regulators, EBNA-3 proteins associate with many cellular proteins in different signaling networks, providing a suitable platform for lifelong survival of the virus and concurrent lymphoma development in the infected host. The chapter describes the function of each these EBV nuclear antigen 3 proteins employed by the virus as a means to understand viral pathogenesis of several EBV-associated B-cell malignancies.

15.
Proc Natl Acad Sci U S A ; 112(37): E5199-207, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324942

RESUMO

DNA-methylation at CpG islands is one of the prevalent epigenetic alterations regulating gene-expression patterns in mammalian cells. Hypo- or hypermethylation-mediated oncogene activation, or tumor suppressor gene (TSG) silencing mechanisms, widely contribute to the development of multiple human cancers. Furthermore, oncogenic viruses, including Epstein-Barr virus (EBV)-associated human cancers, were also shown to be influenced by epigenetic modifications on the viral and cellular genomes in the infected cells. We investigated EBV infection of resting B lymphocytes, which leads to continuously proliferating lymphoblastoid cell lines through examination of the expression pattern of a comprehensive panel of TSGs and the epigenetic modifications, particularly methylation of their regulatory sequences. EBV infection of primary B lymphocytes resulted in global transcriptional repression of TSGs through engagement of hypermethylation. Therefore, CpG methylation profiles of TSGs may be used as a prognostic marker as well as development of potential therapeutic strategies for controlling acute infection and EBV-associated B-cell lymphomas.


Assuntos
Epigênese Genética , Infecções por Vírus Epstein-Barr/genética , Inativação Gênica , Genes Supressores de Tumor , Linfócitos B/imunologia , Linfócitos B/virologia , Proliferação de Células , Sobrevivência Celular , Cromatina , Ilhas de CpG , Metilação de DNA , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Humanos , Leucócitos Mononucleares/citologia , Linfócitos/citologia , Neoplasias/genética , Neoplasias/virologia , Reação em Cadeia da Polimerase , Prognóstico , Regiões Promotoras Genéticas , Latência Viral
16.
Mol Oncol ; 9(2): 365-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25306391

RESUMO

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two human gammaherpesviruses associated with a broad spectrum of B-cell lymphomas, most acutely in immuno-compromised populations. However, there are no drugs which specifically target KSHV or EBV-associated lymphomas. To identify small molecules which selectively inhibit the growth of EBV or KSHV-associated B-cell lines, we performed a fluorescence based high-throughput screen on multiple stable GFP expressing virus-infected or uninfected B-cell lines. We identified 40 initial compounds with selective growth inhibition and subsequently determined the 50% growth inhibitory concentrations (GI50) for each drug. We further examined compounds with higher specificity to explore the underlying molecular mechanisms using transcription factor analysis, as well as a shRNA based knockdown strategy. Our data identified ten compounds with relatively high efficacy for growth inhibition. Two novel small molecules, NSC#10010 and NSC#65381 were potent growth inhibitors for gammaherpesvirus-associated B-lymphomas through activation of both the NF-κB and c-Myc-mediated signaling pathways. These drugs can serve as potential lead compounds to expand the current therapeutic window against EBV or KSHV-associated human B-cell malignancies.


Assuntos
Antineoplásicos , Antivirais , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Linfoma de Células B/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma de Células B/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
J Virol ; 88(7): 3776-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429368

RESUMO

Epstein-Barr virus (EBV) latent antigen EBNA3C is implicated in B-cell immortalization and linked to several B-cell malignancies. Deregulation of H2AX can induce genomic instability with increased chromosomal aberrations, which ultimately leads to tumorigenesis. Here we demonstrated that EBNA3C can attenuate H2AX expression at the transcript and protein levels. A reduction of total H2AX levels was clearly observed upon infection of primary B cells with wild-type EBV but not with EBNA3C knockout recombinant EBV. H2AX also interacted with EBNA3C through its N-terminal domain (residues 1 to 100). Furthermore, H2AX mutated at Ser139 failed to interact with EBNA3C. Luciferase-based reporter assays also revealed that the binding domain of EBNA3C is sufficient for transcriptional inhibition of the H2AX promoter. EBNA3C also facilitated H2AX degradation through recruitment of components of the ubiquitin proteasome pathway. We further demonstrated that knockdown of H2AX in lymphoblastoid cell lines (LCLs) led to the upregulation of the Bub1 oncoprotein and downregulated expression of p53. Overall, our study provides additional insights into EBV-associated B-cell lymphomas, which are linked to the regulation of the DNA damage response system in infected cells. The importance of these insights are as follows: (i) EBNA3C downregulates H2AX expression at the protein and transcript levels in epithelial cells, B cells, and EBV-transformed LCLs, (ii) EBNA3C binds with wild-type H2AX but not with the Ser139 mutant of H2AX, (iii) the N terminus (residues 1 to 100) of EBNA3C is critical for binding to H2AX, (iv) localization of H2AX is predominantly nuclear in the presence of EBNA3C, and (v) H2AX knocked down in LCLs led to enhanced expression of Bub1 and downregulation of the tumor suppressor p53, which are both important for driving the oncogenic process.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 4/fisiologia , Histonas/antagonistas & inibidores , Histonas/biossíntese , Interações Hospedeiro-Patógeno , Linfócitos B/virologia , Células Cultivadas , Análise Mutacional de DNA , Células Epiteliais/virologia , Antígenos Nucleares do Vírus Epstein-Barr , Regulação da Expressão Gênica , Histonas/genética , Humanos , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transcrição Gênica
18.
J Virol ; 87(22): 12121-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986604

RESUMO

Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis.


Assuntos
Apoptose , Aurora Quinase B/metabolismo , Linfócitos B/citologia , Caspases/metabolismo , Proliferação de Células , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidade , Proteína do Retinoblastoma/metabolismo , Animais , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Linfócitos B/metabolismo , Linfócitos B/virologia , Western Blotting , Caspases/genética , Ciclo Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Humanos , Imunoprecipitação , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitinação
19.
PLoS Pathog ; 9(5): e1003314, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658517

RESUMO

Epstein-Barr virus (EBV) is linked to a broad spectrum of B-cell malignancies. EBV nuclear antigen 3C (EBNA3C) is an encoded latent antigen required for growth transformation of primary human B-lymphocytes. Interferon regulatory factor 4 (IRF4) and 8 (IRF8) are transcription factors of the IRF family that regulate diverse functions in B cell development. IRF4 is an oncoprotein with anti-apoptotic properties and IRF8 functions as a regulator of apoptosis and tumor suppressor in many hematopoietic malignancies. We now demonstrate that EBNA3C can contribute to B-cell transformation by modulating the molecular interplay between cellular IRF4 and IRF8. We show that EBNA3C physically interacts with IRF4 and IRF8 with its N-terminal domain in vitro and forms a molecular complex in cells. We identified the Spi-1/B motif of IRF4 as critical for EBNA3C interaction. We also demonstrated that EBNA3C can stabilize IRF4, which leads to downregulation of IRF8 by enhancing its proteasome-mediated degradation. Further, si-RNA mediated knock-down of endogenous IRF4 results in a substantial reduction in proliferation of EBV-transformed lymphoblastoid cell lines (LCLs), as well as augmentation of DNA damage-induced apoptosis. IRF4 knockdown also showed reduced expression of its targeted downstream signalling proteins which include CDK6, Cyclin B1 and c-Myc all critical for cell proliferation. These studies provide novel insights into the contribution of EBNA3C to EBV-mediated B-cell transformation through regulation of IRF4 and IRF8 and add another molecular link to the mechanisms by which EBV dysregulates cellular activities, increasing the potential for therapeutic intervention against EBV-associated cancers.


Assuntos
Apoptose , Linfócitos B/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Fatores Reguladores de Interferon/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Viral/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Fatores Reguladores de Interferon/genética , Transdução de Sinais/genética
20.
J Virol ; 87(9): 5255-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449797

RESUMO

The DNA damage response (DDR) of host cells is utilized by a number of viruses to establish and propagate their genomes in the infected cells. We examined the expression of the DDR genes during Kaposi's sarcoma-associated herpesvirus (KSHV) infection of human peripheral blood mononuclear cells (PBMCs). The genes were mostly downregulated, except H2AX, which was upregulated during infection. H2AX is important for gammaherpesvirus infectivity, and its phosphorylation at serine 139 is crucial for maintenance of latency during mouse gamma-herpesvirus 68 (MHV-68) infection. We now also observed phosphorylation of H2AX at serine 139 during KSHV infection. H2AX is a histone H2A isoform shown to interact with the latency-associated nuclear antigen (LANA) encoded by KSHV. Here, we show that LANA directly interacted with H2AX through domains at both its N and C termini. The phosphorylated form of H2AX (γH2AX) was shown to colocalize with LANA. Chromatin immunoprecipitation (ChIP) assays showed that a reduction in H2AX levels resulted in reduced binding of LANA with KSHV terminal repeats (TRs). Binding preferences of H2AX and γH2AX along the KSHV episome were examined by whole-episome ChIP analysis. We showed that γH2AX had a higher relative binding activity along the TR regions than that of the long unique region (LUR), which highlighted the importance of H2AX phosphorylation during KSHV infection. Furthermore, knockdown of H2AX resulted in decreased KSHV episome copy number. Notably, the C terminus of LANA contributed to phosphorylation of H2AX. However, phosphorylation was not dependent on the ability of LANA to drive KSHV-infected cells into S-phase. Thus, H2AX contributes to association of LANA with the TRs, and phosphorylation of H2AX is likely important for its increased density at the TRs.


Assuntos
Antígenos Virais/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiologia , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Plasmídeos/genética , Latência Viral , Motivos de Aminoácidos , Animais , Antígenos Virais/genética , Linhagem Celular , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Histonas/química , Histonas/genética , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Camundongos , Proteínas Nucleares/genética , Fosforilação , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA