Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107102, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485366

RESUMO

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

2.
Sci Total Environ ; 856(Pt 1): 159078, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179848

RESUMO

The acidophilic sulfur oxidizing bacterium (SOB), Acidithiobacillus ferrooxidans, has been found to stimulate elemental sulfur (S0) oxidation and mineral weathering in alkaline Fe ore tailings. However, A. ferrooxidans growth and activities depend on the pH conditions surrounding their interfaces with minerals. The present study aimed to investigate how pH influences bacterial growth and functions in Fe ore tailings. A simulated aquatic 'homogeneous' incubation system was initially adjusted into acidic (pH 4), neutral (pH 7) and alkaline (pH 9) conditions, which mimicked the microenvironmental conditions of the water-cell-mineral interfaces in the tailings. It was found that A. ferrooxidans grew well and oxidised S0 under the prevailing and initially acidic conditions (pH < 6). These stimulated the weathering of biotite and amphibole-like minerals and the formation of nanosized jarosite and ferrihydrite-like minerals mediated by extracellular polymer substrate (EPS). In contrast, the initially neutral/alkaline pH conditions (i.e., pH > 7) with the presence of the alkaline tailings restricted SOB growth and functions in S0-oxidation and mineral weathering. These findings suggest that it is essential to prime acidic conditions in microenvironments to support SOB growth, activities, and functions toward mineral weathering in tailings, providing critical basis for involving SOB in eco-engineered pedogenesis in tailings.


Assuntos
Minerais , Enxofre , Bactérias , Oxirredução , Ferro , Concentração de Íons de Hidrogênio
3.
Mar Pollut Bull ; 183: 114044, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007270

RESUMO

The Karnaphuli River is one of the prime and most important streams in the southeastern part of Bangladesh. The favorable water current and the geographic location have rendered the Karnaphuly River estuary a suitable habitat and a breeding ground for diverse fish species. Reversely, this estuary has been polluted by discharges from many point and non-point sources due to its location in the catchment area of a heavily industrialized area, Chattagram port city. However, published research concerning the status of toxic and trace elements in some commercially important benthic and pelagic coastal fish species in Karnaphuli River estuary was not found in the existing literature. Therefore, it's an important field of study on the assessment of toxic and trace elements concentration in the commercially important benthic and pelagic coastal fish species and their health taxation in the Karnaphuli River Estuary. Energy dispersive X-ray fluorescence (ED-XRF) was used to quantify trace metal concentration in edible parts of the fish species. This study revealed that the rank of the trace metals concentration was as follows (mg/kg): Zn (37.1) > Mn (16.12) > V (11.16) > Cu (9.49) > Rb (5.62) > Pb (2.98) > Cr (1.59) > Co (1.17). The F-test showed that a significant difference at 95 % confidence level in the distribution pattern of trace metals concentration among the examined fish species in the study area. The metal pollution index (MPI) in the muscle of fishes were found to be in the following order: L. bata > P. monodon > T. cirratus > M. bleekeri > O. pabda > H. nehereus > L. calcarifer > P. argenteus > P. paradiseus > T. toli, and the MPIs for most of the benthic fish species were higher compared to the pelagic fishes. On the other hand, the examined fish species were significantly bio-accumulative with the highest bio-accumulation factor value for benthic species. The multivariate analysis identified that the sources of the trace metals were associated with anthropogenic activities. For the human health risk assessment concern, estimated daily intake, target hazard quotient and cancer-causing risk were estimated. The results for non-cancer hazardous index values were found to be lower than unity. On the other hand, the total cancer risk data ranging from 1.24E-05 to 1.70E-05 were fallen within the range for the threshold values (1.0E-06 to 1.0E-04). However, considering the suggested values set by the environmental and regulatory agencies, it has been recommended that no significant non-carcinogenic and cancer-causing health risk for humans was seen due to the consumption of the studied fish species.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Bangladesh , Monitoramento Ambiental/métodos , Peixes , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Rios , Oligoelementos/análise , Água/análise , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 422: 126925, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34449336

RESUMO

Bauxite residues generated from alumina refineries worldwide have accumulated to more than 4 billion tons, at an annual increment of ~ 0.15 billion tons. It is imperative and urgent for the alumina sector to develop field-operable disposal solutions for rapid and cost-effective stabilisation of alkaline bauxite residues (BR) in the storage facility to minimise/prevent potential environmental risks. Taking advantage of the availability of coal ash (CA) on site, we studied a feasible way to synthesise geopolymer from active (amorphous) aluminosilicate components of BR and CA via the alkaline hydrolysis under ambient conditions. The new geopolymeric binder effectively solidifies BR-CA mixtures into indurated monoliths whose unconstrained compressive strength (UCS) can reach as high as ~ 20 MPa after 8 weeks. The Full Factorial Experimental Design was used to study relative influences of BR:CA ratio, modulus of activating solution, and H2O/Na2O ratio on UCS. Micro-spectroscopic structural analyses using electron-dispersive X-ray spectroscopy and X-ray Photoelectron Spectroscopy suggested a co-occurrence of cement-like calcium aluminosilicate hydrate (C-A-S-H) and Na-rich aluminosilicate 3D-extended network (geopolymer) within the binder phase. The advantage of this ambient geopolymerisation, without resorting to elevated temperature curing, renders a feasible way of valorising BR and CA for environmental management of alkaline wastes at alumina refineries.

5.
Chemosphere ; 287(Pt 1): 132048, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34478961

RESUMO

Exposure to dust particles enriched with arsenic (As) is a significant health threat for populations living in Southeast Asian megacities. The mineralogical composition of dust particles is the key factor that controls the retention and release of As. This study investigated the degree of metal(oid)s pollution (As, Ca, Fe, K, Ga, Rb, Sr, Ti, V, Y, and Zr) in road dust of Dhaka city, Bangladesh. Enrichment factor and geoaccumulation index suggested that the road dust was heavily enriched with As, which triggers a comprehensive investigation of its controlling mechanisms and potential health risks by combining physicochemical and mineralogical information with multivariate analysis and a simulated probabilistic risk estimation model. Alkaline road dust (pH1:5 ranges from 8.02 to 10.34) in Dhaka city was found to have significant enrichment of As. Dust alkalinity was possibly controlled by the presence of carbonate minerals, such as calcite. Quartz was identified as the dominant mineral phase followed by magnesium carbon arsenide (MgCAs2). Carbonate mineral driven alkaline pH conditions in road dust would potentially trigger the release and mobilization of As to the environment. However, organic complexation can stabilize As on particle surfaces. Monte Carlo simulation-based health risk forecast suggested that the probability of As associated cancer risk has greatly exceeded the threshold value of 1E-4 for adults and children, and children are more vulnerable than adults. According to sensitivity analysis, the concentration of As and exposure duration (ED) posed the most significant impact (>58%) on risk estimation.


Assuntos
Arsênio , Metais Pesados , Adulto , Bangladesh , Criança , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco
6.
Environ Sci Technol ; 55(12): 8020-8034, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34043324

RESUMO

The neutralization of strongly alkaline pH conditions and acceleration of mineral weathering in alkaline Fe ore tailings have been identified as key prerequisites for eco-engineering tailings-soil formation for sustainable mine site rehabilitation. Acidithiobacillus ferrooxidans has great potential in neutralizing alkaline pH and accelerating primary mineral weathering in the tailings but little information is available. This study aimed to investigate the colonization of A. ferrooxidans in alkaline Fe ore tailings and its role in elemental sulfur (S0) oxidation, tailings neutralization, and Fe-bearing mineral weathering through a microcosm experiment. The effects of biological S0 oxidation on the weathering of alkaline Fe ore tailings were examined via various microspectroscopic analyses. It is found that (1) the A. ferrooxidans inoculum combined with the S0 amendment rapidly neutralized the alkaline Fe ore tailings; (2) A. ferrooxidans activities induced Fe-bearing primary mineral (e.g., biotite) weathering and secondary mineral (e.g., ferrihydrite and jarosite) formation; and (3) the association between bacterial cells and tailings minerals were likely facilitated by extracellular polymeric substances (EPS). The behavior and biogeochemical functionality of A. ferrooxidans in the tailings provide a fundamental basis for developing microbial-based technologies toward eco-engineering soil formation in Fe ore tailings.


Assuntos
Acidithiobacillus , Ferro , Bactérias , Concentração de Íons de Hidrogênio , Minerais , Oxirredução , Enxofre
7.
Environ Sci Pollut Res Int ; 28(30): 40808-40823, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33772469

RESUMO

In recent decades, anthropogenic activities have resulted in road dust and roadside soil hosted metal(oid)s pollution in the urban environment. In the South-Asian megacity "Dhaka", schools are situated in the areas with high population density and high traffic emissions. As the school-going children are the most vulnerable receptor, school premises in Dhaka city represent an important yet overlooked exposure point to contaminated dust and soil. Therefore, the present study investigated the metal(oid)s (Cu, Pb, Zn and As) pollution in dust and soil at school compounds, explored their possible sources and estimated the associated human health risk. This study revealed that dust contained higher concentration of metal(oid)s than soil, and the Azimpur Govt. Girls School & College was identified as the most contaminated site. The enrichment of school dust with Cu, Zn and Pb were strictly related to the dense population and substantial traffic activity in the study areas. Arsenic content in school soil was several folds higher than its concentration in the upper crust. Natural and anthropogenic activities possibly posed a synergistic effect on such high soil As. The multivariate statistics suggested that Cu, Zn and Pb were likely to be originated from traffic-related activities, while Zr, Fe, Ti and Rb from natural sources, and K, Sr and Ca from industrial activities. The assessment of health risk suggested the children as a vulnerable receptor and ingestion was identified as the dominant pathway of dust and soil exposure. The hazard index (HI) values were lower than unity, suggesting no possible non-cancer health risk. Arsenic posed a lifetime carcinogenic risk to the population in the study area through soil ingestion and dermal adsorption.


Assuntos
Metais Pesados , Poluentes do Solo , Bangladesh , Criança , China , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Instituições Acadêmicas , Solo , Poluentes do Solo/análise , Zinco
8.
Ecotoxicol Environ Saf ; 206: 111349, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32992292

RESUMO

A clear understanding of various hydrogeochemical processes is essential for the protection of groundwater quality, which is a prime concern in Bangladesh. The present study deals with the geochemistry of groundwater at various depths to investigate the hydrogeochemical processes controlling the water quality of Meghna floodplain, the sources and mechanisms of arsenic (As) liberation, and the estimation of carcinogenic and non-carcinogenic health risks (using probabilistic and deterministic approaches) to the adults and children of the Comilla district, central-east Bangladesh. The groundwaters were generally of Ca-Mg-HCO3 type, and water-sediment interaction was the dominant factor in evolving the chemical signatures. The dissolution of carbonates, weathering of silicates, and cation exchange processes governed the major ion chemistry. Dissolved As concentration ranged from 0.002 to 0.36 mg/L and Monte Carlo simulation-based probabilistic estimation of cancer risk suggested that; (1) ~ 83% of the waters exceeded the higher end of the acceptable limit of 1 × 10-4; (2) the probability of additional cases of cancer in every 10,000 adults and children were on average ~9 and ~5, respectively; (3) adults were more susceptible than children; and (4) ingestion was the main pathway of As poisoning and the contribution of dermal contact was negligible (<1%). According to sensitivity analysis, the duration of exposure to As and its concentration in groundwater posed the greatest impact on cancer risk assessment. However, hydrogeochemical investigations on the sources and mobilization mechanisms of As suggested that the reductive dissolution of Fe and Mn oxyhydroxides was the principal process of As release in groundwater. The oxidation of pyrite and competitive exchange of fertilizer-derived phosphate for the sorbed As were not postulated as the plausible explanation for As liberation.


Assuntos
Arsênio/análise , Exposição Ambiental/estatística & dados numéricos , Poluentes Químicos da Água/análise , Adulto , Bangladesh , Criança , Monitoramento Ambiental , Água Subterrânea/análise , Humanos , Ferro , Fosfatos/análise , Medição de Risco , Sulfetos
9.
Food Chem Toxicol ; 118: 348-354, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29782897

RESUMO

Despite the benefits of seafood's consumption, the bioaccumulation of metals in fish can endanger consumers' health. This study analyzed lead (Pb), mercury (Hg), Arsenic (As), and Cadmium (Cd) concentrations in fillet and gill of parrotfish (Scarus ghobban) using flame atomic adsorption spectroscopy (FAAS). The potential non-carcinogenic and carcinogenic health risks due to consumption of Scarus ghobban fillet were assessed by estimating average target hazard quotient (THQ) and total target hazard quotient (TTHQ) and Incremental Lifetime Cancer Risk cancer risk (ILCR) of the analyzed metals. This study indicated that Cd, Pb, As and Hg concentrations were significantly (p < 0.05) lower than Food and Agriculture Organization (FAO) and national standard limits. The meal concentrations (µg/kg dry weight) in both fillet and gill were ranked as follows Pb > Cd > As > Hg. THQ and TTHQ were lower than 1 for adults and children, indicating that consumers were not at considerable non-carcinogenic risk. However, ILCR value for As was greater than 10-4, indicating that consumers are at carcinogenic risk. Overall, this research highlighted that although the consumption of parrotfish from the Persian Gulf does not pose non-carcinogenic health risks, carcinogenic risks derived from toxic As can be detrimental for local consumers.


Assuntos
Peixes , Brânquias/química , Músculos/química , Animais , Humanos , Oceano Índico
10.
Food Chem Toxicol ; 118: 204-211, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29684495

RESUMO

One of the most important pathways for exposure to metals is drinking water ingestion. Chronic or acute exposure to metals can endanger the health of the exposed population, and hence, estimation of human health risks is crucial. In the current study for the first time, the concentrations of Mercury (Hg), Arsenic (As), Zinc (Zn), Lead (Pb) and Cobalt (Co) in 120 collected tap water samples (2015, July-November) from Ilam city, Iran were investigated using flame atomic absorption spectrophotometer. Also, the metal-induced carcinogenic and non-carcinogenic risks for consumers exposed to tap drinking water were calculated. The average (range) concentrations of Hg, Zn, As, Pb and Co were defined as 0.40 ± 0.10 µg/L (ND-0.9 µg/L), 5014 ± 5707 µg/L (2900.00-5668.33 µg/L), 21.008 ± 2.876 µg/L (3.5-62 µg/L), 30.38 ± 5.56 µg/L (6-87 µg/L), and 11.34 ± 1.61 µg/L (0.1-50 µg/L), respectively. Average concentrations of all examined metals were significantly higher than WHO and national standard recommended limits. The ranking order of metals concentrations in the tap drinking water was Zn > Pb > As > Co > Hg. Except for Hg and Co, at least one age group consumers were at considerable non-carcinogenic risks induced by Zn, As and Pb [Target Hazard Quotient (THQ > 1)]. The rank order of age groups consumers based on THQ and Incremental lifetime cancer risk (ILCR) was <1 years >1-9 years > 20 + years > 10-19 years. The calculated ILCR for As in all age groups were higher than 10-3 value. All age groups of consumers in Ilam city, especially infants (<1 years) and children (1-10 years), are at considerable non-carcinogenic and carcinogenesis risk.


Assuntos
Carcinógenos/análise , Carcinógenos/toxicidade , Água Potável/química , Metais/análise , Metais/toxicidade , Adolescente , Criança , Pré-Escolar , Exposição Dietética , Humanos , Lactente , Irã (Geográfico) , Neoplasias/induzido quimicamente , Medição de Risco , Espectrofotometria Atômica
11.
J Environ Manage ; 185: 70-78, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28029481

RESUMO

Concentration of eight heavy metals in surface and groundwater around Dhaka Export Processing Zone (DEPZ) industrial area were investigated, and the health risk posed to local children and adult residents via ingestion and dermal contact was evaluated using deterministic and probabilistic approaches. Metal concentrations (except Cu, Mn, Ni, and Zn) in Bangshi River water were above the drinking water quality guidelines, while in groundwater were less than the recommended limits. Concentration of metals in surface water decreased as a function of distance. Estimations of non-carcinogenic health risk for surface water revealed that mean hazard index (HI) values of As, Cr, Cu, and Pb for combined pathways (i.e., ingestion and dermal contact) were >1.0 for both age groups. The estimated risk mainly came from the ingestion pathway. However, the HI values for all the examined metals in groundwater were <1.0, indicating no possible human health hazard. Deterministically estimated total cancer risk (TCR) via Bangshi River water exceeded the acceptable limit of 1 × 10-4 for adult and children. Although, probabilistically estimated 95th percentile values of TCR exceeded the benchmark, mean TCR values were less than 1 × 10-4. Simulated results showed that 20.13% and 5.43% values of TCR for surface water were >1 × 10-4 for adult and children, respectively. Deterministic and probabilistic estimations of cancer risk through exposure to groundwater were well below the safety limit. Overall, the population exposed to Bangshi River water remained at carcinogenic and non-carcinogenic health threat and the risk was higher for adults. Sensitivity analysis identified exposure duration (ED) and ingestion rate (IR) of water as the most relevant variables affecting the probabilistic risk estimation model outcome.


Assuntos
Saúde Ambiental , Monitoramento Ambiental , Metais Pesados/toxicidade , Medição de Risco , Adulto , Bangladesh , Criança , China , Humanos , Água , Poluentes Químicos da Água
12.
Environ Sci Pollut Res Int ; 23(4): 3414-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490917

RESUMO

Although the tobacco production and consumption rate in Bangladesh is very high and a substantial portion of premature deaths is caused by tobacco smoking, the status of heavy metals in tobacco plants has not yet determined. This study, therefore, investigated the concentrations of Cu, Ni, Cd, Pb, Cr, and Zn in tobacco plants and their surrounding agricultural soils in Kushtia District, Bangladesh. The geochemical maps showed a similar spatial distribution pattern of the analyzed metals and identified Shempur, Kharara, Taragunia, and Shantidanga as metal hot spots. Geoanalytical indexes were applied to assess the extent of soil contamination, and the results depicted that the soils of Shempur, Kharara, Taragunia, and Shantidanga were moderately contaminated where Cd contributed the most to contamination degree (C d) in spite of its relative low content. However, other five areas in Kushtia District were suggested as uncontaminated according to both C d and pollution load index (PLI). The hazard quotient (HQ) and hazard index (HI) showed no possible indication of human health risks via ingestion of agricultural soils. This study also determined that human activities such as excess application of commercial fertilizers, animal manures, and metal-based pesticides were the sources of Cu, Ni, Cd, and Cr enrichment in soils and that the metals into tobacco plants were transported from the soils. The present study conclusively suggested that regulation of improper use of agrochemicals and continuous monitoring of heavy metals in tobacco plants are needed to reduce the tobacco-related detrimental health problems in Bangladesh.


Assuntos
Metais Pesados/análise , Nicotiana/metabolismo , Poluentes do Solo/análise , Adulto , Agricultura/métodos , Bangladesh , Monitoramento Ambiental , Fertilizantes , Humanos , Metais Pesados/metabolismo , Medição de Risco , Poluentes do Solo/metabolismo
13.
Environ Monit Assess ; 185(5): 3867-78, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22933105

RESUMO

Considering the human health risk due to the consumption of foodstuffs, the concentrations of heavy metals (lead, manganese, chromium, cadmium, and arsenic) are investigated in vegetables, fruits, and fish species collected from the central market (called Shaheb Bazar) of Rajshahi City, Bangladesh. The foodstuffs examined for metal constituents are the basis of human nutrition in the study area. The highest concentrations of Mn and As in vegetables (onion and pointed gourd, respectively), Cr and Cd in fruits (black berry and mango, respectively), and Pb in fish (catla) are recorded. Health risks associated with these heavy metals are evaluated due to dietary intake. Target hazard quotient (THQ) and hazard index (HI) are calculated to evaluate the non-carcinogenic health risk from individual and combined heavy metals. The THQ values for individual heavy metals are below 1, suggesting that people would not experience significant health risks if they ingest a single heavy metal from one kind of foodstuff (e.g., vegetables). However, consumption of several of the foodstuffs could lead a potential health risk to human population since HI value is higher than 1. The relative contributions of vegetables, fishes, and fruits to HI are 49.44, 39.07, and 11.53 %, respectively. Also, the relative contributions of Pb, Cd, As, Mn, and Cr to HI are 51.81, 35.55, 11.73, 0.85, and 0.02 %, respectively. The estimation shows that the carcinogenic risk of arsenic exceeds the accepted risk level of 1 × 10(-6). Thus, the carcinogenic risk of arsenic for consumers is a matter of concern.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Contaminação de Alimentos/estatística & dados numéricos , Metais Pesados/análise , Animais , Bangladesh , Cidades/estatística & dados numéricos , Dieta/estatística & dados numéricos , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Peixes , Frutas/química , Humanos , Medição de Risco , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA