Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276774

RESUMO

Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.

2.
Sci Adv ; 10(24): eadi2046, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875335

RESUMO

The use of immune checkpoint inhibitors, which activate T cells, is a paradigm shift in the treatment of non-small cell lung cancer. However, the overall response remains low. To address this limitation, here we describe a novel platform, termed antibody-conjugated drug-loaded nanotherapeutics (ADN), which combines immunotherapy and molecularly targeted therapy. An ADN was designed with an anti-CD47 and anti-programmed death ligand 1 (PDL1) antibody pair on the surface of the nanoparticle and a molecularly targeted inhibitor of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway, PI103, entrapped in the nanoparticle. The anti-CD47-PDL1-ADN exhibited greater antitumor efficacy than current treatment options with a PDL1 inhibitor in vivo in an aggressive lung cancer immunocompetent mouse model. Dual antibody-drug-loaded nanotherapeutics can emerge as an attractive platform to improve outcomes with cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Nanopartículas , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/imunologia , Imunoterapia/métodos , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Ensaios Antitumorais Modelo de Xenoenxerto , Modelos Animais de Doenças , Antígeno CD47/imunologia , Antígeno CD47/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Device ; 2(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617078

RESUMO

Three-dimensional (3D) cancer cell culture models such as tumor spheroids better recapitulate in vivo tumors than conventional two-dimensional (2D) models. However, two major challenges limit the routine use of 3D tumor spheroids. Firstly, most existing methods of generating tumor spheroids are not high-throughput. Secondly, tumor spheroids generated using current methods are highly variable in dimension. Here, we describe a simple 'Do-It-Yourself (DIY)' device that can be assembled for less than $7 of parts and generate uniform tumor spheroids in a high-throughput manner. We used a simple phone coin vibrating motor to superimpose the vibration for breaking a laminar jet of cell-loaded alginate solution into equally sized spherical beads. We generated 3,970 tumor spheroids/min, which exhibited a hypoxic core recapitulating in vivo tumors and could be used to test the diffusion efficacy of anticancer drugs. Such low-cost, easy-to-fabricate, simple-to-operate systems with high-throughput outcomes are essential to democratize and standardize cancer research.

4.
J Inorg Biochem ; 249: 112369, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776829

RESUMO

Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , DNA Topoisomerases Tipo I/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antibióticos Antineoplásicos , Inibidores da Topoisomerase II/farmacologia , Superóxidos/metabolismo , Antraciclinas , Radicais Livres/metabolismo , Cobre/química , Complexos de Coordenação/química
5.
Nat Nanotechnol ; 17(1): 98-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34795441

RESUMO

Cancer progresses by evading the immune system. Elucidating diverse immune evasion strategies is a critical step in the search for next-generation immunotherapies for cancer. Here we report that cancer cells can hijack the mitochondria from immune cells via physical nanotubes. Mitochondria are essential for metabolism and activation of immune cells. By using field-emission scanning electron microscopy, fluorophore-tagged mitochondrial transfer tracing and metabolic quantification, we demonstrate that the nanotube-mediated transfer of mitochondria from immune cells to cancer cells metabolically empowers the cancer cells and depletes the immune cells. Inhibiting the nanotube assembly machinery significantly reduced mitochondrial transfer and prevented the depletion of immune cells. Combining a farnesyltransferase and geranylgeranyltransferase 1 inhibitor, namely, L-778123, which partially inhibited nanotube formation and mitochondrial transfer, with a programmed cell death protein 1 immune checkpoint inhibitor improved the antitumour outcomes in an aggressive immunocompetent breast cancer model. Nanotube-mediated mitochondrial hijacking can emerge as a novel target for developing next-generation immunotherapy agents for cancer.


Assuntos
Leucócitos/patologia , Mitocôndrias/metabolismo , Nanotubos/química , Neoplasias/patologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Imunidade , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Nanotubos/ultraestrutura
6.
Front Mol Biosci ; 8: 754443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926577

RESUMO

Allogeneic natural killer (aNK) cell adoptive therapy has the potential to dramatically impact clinical outcomes of glioblastoma multiforme (GBM). However, in order to exert therapeutic activity, NK cells require tumor expression of ligands for activating receptors, such as MHC Class I peptide A/B (MICA/B) and ULBPs. Here, we describe the use of a blood-brain barrier (BBB) permissive supramolecular cationic drug vehicle comprising an inhibitor of the chaperone heat shock protein 90 (Hsp90), which sustains a cytotoxic effect on GBM cells, boosts the expression of MICA/B and ULBPs on the residual population, and augments the activity of clinical-grade aNK cells (GTA002). First, we identify Hsp90 mRNA transcription and gain of function as significantly upregulated in GBM compared to other central nervous system tumors. Through a rational chemical design, we optimize a radicicol supramolecular prodrug containing cationic excipients, SCI-101, which displays >2-fold increase in relative BBB penetration compared to less cationic formulations in organoids, in vitro. Using 2D and 3D biological models, we confirm SCI-101 sustains GBM cytotoxicity 72 h after drug removal and induces cell surface MICA/B protein and ULBP mRNA up to 200% in residual tumor cells compared to the naked drug alone without augmenting the shedding of MICA/B, in vitro. Finally, we generate and test the sequential administration of SCI-101 with a clinical aNK cell therapy, GTA002, differentiated and expanded from healthy umbilical cord blood CD34+ hematopoietic stem cells. Using a longitudinal in vitro model, we demonstrate >350% relative cell killing is achieved in SCI-101-treated cell lines compared to vehicle controls. In summary, these data provide a first-of-its-kind BBB-penetrating, long-acting inhibitor of Hsp90 with monotherapy efficacy, which improves response to aNK cells and thus may rapidly alter the treatment paradigm for patients with GBM.

7.
Nanophotonics ; 10(12): 3063-3073, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589378

RESUMO

Targeted delivery of drugs to tumor cells, which circumvent resistance mechanisms and induce cell killing, is a lingering challenge that requires innovative solutions. Here, we provide two bioengineered strategies in which nanotechnology is blended with cancer medicine to preferentially target distinct mechanisms of drug resistance. In the first 'case study', we demonstrate the use of lipid-drug conjugates that target molecular signaling pathways, which result from taxane-induced drug tolerance via cell surface lipid raft accumulations. Through a small molecule drug screen, we identify a kinase inhibitor that optimally destroys drug tolerant cancer cells and conjugate it to a rationally-chosen lipid scaffold, which enhances anticancer efficacy in vitro and in vivo. In the second 'case study', we address resistance mechanisms that can occur through exocytosis of nanomedicines. Using adenocarcinoma HeLa and MCF-7 cells, we describe the use of gold nanorod and nanoporous vehicles integrated with an optical antenna for on-demand, photoactivation at ~650 nm enabling release of payloads into cells including cytotoxic anthracyclines. Together, these provide two approaches, which exploit engineering strategies capable of circumventing distinct resistance barriers and induce killing by multimodal, including nanophotonic mechanisms.

8.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200503

RESUMO

The interaction of tumor cells with blood vessels is one of the key steps during cancer metastasis. Metastatic cancer cells exhibit phenotypic state changes during this interaction: (1) they form tunneling nanotubes (TNTs) with endothelial cells, which act as a conduit for intercellular communication; and (2) metastatic cancer cells change in order to acquire an elongated phenotype, instead of the classical cellular aggregates or mammosphere-like structures, which it forms in three-dimensional cultures. Here, we demonstrate mechanistically that a siRNA-based knockdown of the exocyst complex protein Sec3 inhibits TNT formation. Furthermore, a set of pharmacological inhibitors for Rho GTPase-exocyst complex-mediated cytoskeletal remodeling is introduced, which inhibits TNT formation, and induces the reversal of the more invasive phenotype of cancer cell (spindle-like) into a less invasive phenotype (cellular aggregates or mammosphere). Our results offer mechanistic insights into this nanoscale communication and shift of phenotypic state during cancer-endothelial interactions.


Assuntos
Neoplasias da Mama/patologia , Comunicação Celular , Endotélio Vascular/patologia , Nanotubos/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Técnicas de Cultura de Células , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Feminino , Humanos , Metástase Neoplásica , Fenótipo , Células Tumorais Cultivadas , Proteínas de Transporte Vesicular/genética , Proteínas rho de Ligação ao GTP/genética
9.
Cancer Res ; 80(23): 5355-5366, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33077554

RESUMO

Drug-induced resistance, or tolerance, is an emerging yet poorly understood failure of anticancer therapy. The interplay between drug-tolerant cancer cells and innate immunity within the tumor, the consequence on tumor growth, and therapeutic strategies to address these challenges remain undescribed. Here, we elucidate the role of taxane-induced resistance on natural killer (NK) cell tumor immunity in triple-negative breast cancer (TNBC) and the design of spatiotemporally controlled nanomedicines, which boost therapeutic efficacy and invigorate "disabled" NK cells. Drug tolerance limited NK cell immune surveillance via drug-induced depletion of the NK-activating ligand receptor axis, NK group 2 member D, and MHC class I polypeptide-related sequence A, B. Systems biology supported by empirical evidence revealed the heat shock protein 90 (Hsp90) simultaneously controls immune surveillance and persistence of drug-treated tumor cells. On the basis of this evidence, we engineered a "chimeric" nanotherapeutic tool comprising taxanes and a cholesterol-tethered Hsp90 inhibitor, radicicol, which targets the tumor, reduces tolerance, and optimally reprimes NK cells via prolonged induction of NK-activating ligand receptors via temporal control of drug release in vitro and in vivo. A human ex vivo TNBC model confirmed the importance of NK cells in drug-induced death under pressure of clinically approved agents. These findings highlight a convergence between drug-induced resistance, the tumor immune contexture, and engineered approaches that consider the tumor and microenvironment to improve the success of combinatorial therapy. SIGNIFICANCE: This study uncovers a molecular mechanism linking drug-induced resistance and tumor immunity and provides novel engineered solutions that target these mechanisms in the tumor and improve immunity, thus mitigating off-target effects.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/química , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Colesterol/química , Docetaxel/administração & dosagem , Docetaxel/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Macrolídeos/química , Macrolídeos/farmacocinética , Macrolídeos/farmacologia , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/cirurgia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
J Am Chem Soc ; 138(50): 16443-16451, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27933857

RESUMO

Despite the great interest in artificial ion channel design, only a small number of channel-forming molecules are currently available for addressing challenging problems, particularly in the biological systems. Recent advances in chloride-mediated cell death, aided by synthetic ion carriers, encouraged us to develop chloride selective supramolecular ion channels. The present work describes vicinal diols, tethered to a rigid 1,3-diethynylbenzene core, as pivotal moieties for the barrel-rosette ion channel formation, and the activity of such channels was tuned by controlling the lipophilicity of designed monomers. Selective transport of chloride ions via an antiport mechanism and channel formation in the lipid bilayer membranes were confirmed for the most active molecule. A theoretical model of the supramolecular barrel-rosette, favored by a network of intermolecular hydrogen bonding, has been proposed. The artificial ion-channel-mediated transport of chloride into cells and subsequent disruption of cellular ionic homeostasis were evident. Perturbation of chloride homeostasis in cells instigates cell death by inducing the caspase-mediated intrinsic pathway of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Benzeno/química , Benzeno/farmacologia , Cloretos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Molecular
11.
J Am Chem Soc ; 138(24): 7558-67, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27222916

RESUMO

Transmembrane anion transport modality is enjoying a renewed interest because of recent advances toward anticancer therapy. Here we show bis(sulfonamides) as efficient receptors for selective Cl(-) ion binding and transport across lipid bilayer membranes. Anion-binding studies by (1)H NMR indicate a logical correlation between the acidity of sulfonamide N-H proton and binding strength. Such recognition is influenced further by the lipophilicity of a receptor during the ion-transport process. The anion-binding and transport activity of a bis(sulfonamide) system are far superior compared to those of the corresponding bis(carboxylic amide) derivative. Fluorescent-based assays confirm the Cl(-)/anion antiport as the operational mechanism of the ion transport by bis(sulfonamides). Disruption of ionic homeostasis by the transported Cl(-) ion, via bis(sulfonamide), is found to impose cell death. Induction of a caspase-dependent intrinsic pathway of apoptosis is confirmed by monitoring the changes in mitrochondrial membrane potential, cytochrome c leakage, activation of family of caspases, and nuclear fragmentation studies.


Assuntos
Apoptose/efeitos dos fármacos , Cloretos/farmacologia , Bicamadas Lipídicas/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Células A549 , Animais , Ânions/metabolismo , Caspases/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cloretos/metabolismo , Citocromos c/metabolismo , Células HeLa , Humanos , Transporte de Íons , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo
12.
Chemistry ; 21(48): 17445-52, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26448281

RESUMO

Cyclo-oligo-(1→6)-ß-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed.


Assuntos
Glucosamina/química , Transporte de Íons , Nucleotídeos de Adenina , Ânions/química , Glucosamina/análogos & derivados , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oligonucleotídeos , Oligorribonucleotídeos
13.
Dalton Trans ; 42(28): 10304-14, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23736066

RESUMO

Imino phenoxide complexes of Nb and Ta show precise control towards the solvent free ring-opening polymerization of lactides (LA) and ε-caprolactone (CL). There is a close proximity between the observed number average molecular weight (M(n)) and theoretical molecular weight and the molecular weight distributions (MWDs) were found to be narrow. Analysis of low molecular weight oligomers of LA synthesized from these compounds revealed that the ligand is incorporated as one of the end terminal groups in the polymer chain. In addition, these complexes were realized to be precatalysts for the polymerization of ethylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA