Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2316452121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621125

RESUMO

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH4, H2) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic. We hypothesize that surface-generated ROS oxidize dissolved Fe(II) resulting in Fe(III) (hydr)oxide precipitates, that settle to the seafloor as "iron snow." The iron snow provides a respiratory substrate for anaerobic microorganisms ("breathing iron"), and limits harmful ROS exposure since they are now neutralized at the ice-water interface. Based on this scenario, we calculated Gibbs energies and maximal biomass productivities of various anaerobic metabolisms for a range of pH, temperatures, and H2 fluxes. Productivity by iron reducers was greater for most environmental conditions considered, whereas sulfate reducers and methanogens were more favored at high pH. Participation of Fe in the metabolic redox processes is largely neglected in most models of Europan biogeochemistry. Our model overcomes important conceptual roadblocks to life in icy ocean worlds and broadens the potential metabolic diversity, thus increasing total primary productivity, the diversity and volume of habitable environmental niches and, ultimately, the probability of biosignature detection.


Assuntos
Gelo , Ferro , Espécies Reativas de Oxigênio , Neve , Oxirredução , Compostos Ferrosos
2.
Langmuir ; 36(10): 2729-2739, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32078330

RESUMO

Elucidating the structure-activity relationships between biomolecules and hydroxyapatite (HAP) is essential to understand bone mineralization mechanisms, develop HAP-based implants, and design drug delivery vectors. Here, four peptides identified by phage display were selected as model HAP-binding peptides (HBPs) to examine the effects of primary amino acid sequence, phosphorylation of serine, presence of charged amino acid residues, and net charge of the peptide on (1) HAP-binding affinity, (2) secondary conformation, and (3) HAP nucleation and crystal growth. Binding affinities were determined by obtaining adsorption isotherms by mass depletion, and the conformations of the peptides in solution and bound states were observed by circular dichroism. Results showed that the magnitude of the net charge primarily controlled binding affinity, with little dependence on the other HBP features. The binding affinity and conformation results were in good agreement with our previous molecular dynamics simulation results, thus providing an excellent benchmark for the simulations. Transmission electron microscopy was used to explore the effect of these HBPs on calcium phosphate (Ca-PO4) nucleation and growth. Results indicated that HBPs may inhibit nucleation of Ca-PO4 nanoparticles and their phase transition to crystalline HAP, as well as control crystal growth rates in specific crystallographic directions, thus changing the classical needle-like morphology of inorganically grown HAP crystals to a biomimetic plate-like morphology.


Assuntos
Durapatita , Peptídeos , Adsorção , Sequência de Aminoácidos , Relação Estrutura-Atividade
4.
J Biomed Mater Res B Appl Biomater ; 107(6): 1854-1863, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30550636

RESUMO

Nickel-titanium (NiTi) alloy is an attractive material for biomedical implant applications. In this study, the effects of laser shock peening (LSP) on the biocompatibility, corrosion resistance, ion release rate and hardness of NiTi were characterized. The cell culture study indicated that the LSP-treated NiTi samples had lower cytotoxicity and higher cell survival rate than the untreated samples. Specifically, the cell survival rate increased from 88 ± 1.3% to 93 ± 1.1% due to LSP treatment. LSP treatment was shown to significantly decrease the initial Ni ion release rate compared with that of the untreated samples. Electrochemical tests indicated that LSP improved the corrosion resistance of the NiTi alloy in simulated body fluid, with a decrease in the corrosion current density from 1.41 ± 0.20 µA/cm2 to 0.67 ± 0.24 µA/cm2 . Immersion tests showed that calcium deposition was significantly enhanced by LSP. In addition, the hardness of NiTi alloy increased from 226 ± 3 HV before LSP to 261 ± 3 HV after LSP. These results demonstrated that LSP is a promising surface modification method that can be used to improve the mechanical properties, corrosion resistance and biocompatibility of NiTi alloy for biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1854-1863, 2019.


Assuntos
Tecido Adiposo/metabolismo , Ligas , Lasers , Teste de Materiais , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Ligas/química , Ligas/farmacologia , Corrosão , Humanos , Células-Tronco/citologia
5.
Mater Sci Eng C Mater Biol Appl ; 93: 12-20, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274044

RESUMO

Hierarchical structures on metallic implants can enhance the interaction between cells and implants and thus increase their biocompatibility. However, it is difficult to directly fabricate hierarchical structures on metallic implants. In this study, we used a simple one-step method, ultrasonic nanocrystal surface modification (UNSM), to fabricate hierarchical surface structures on a nickel-titanium (NiTi) alloy. During UNSM, a tungsten carbide ball hits metal surfaces at ultrasonic frequency. The overlapping of the ultrasonic strikes generates hierarchical structures with microscale grooves and embedded nanoscale wrinkles. Cell culture experiments showed that cells adhere better and grow more prolifically on the UNSM-treated samples. Compared with the untreated samples, the UNSM-treated samples have higher corrosion resistance. In addition, the surface hardness increased from 243 Hv to 296 Hv and the scratch hardness increased by 22%. Overall, the improved biocompatibility, higher corrosion resistance, and enhanced mechanical properties demonstrate that UNSM is a simple and effective method to process metallic implant materials.


Assuntos
Ligas/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Ondas Ultrassônicas , Adesão Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Propriedades de Superfície
6.
Langmuir ; 34(26): 7932-7941, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29888924

RESUMO

Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound water layers, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution from the surface-peptide interactions is thermodynamically favorable to peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, due to the controlling contribution of peptide-surface interaction in the intermediate water phase. The surface-bound water layers are observed as the origin of bioresistance of solid surfaces toward the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force, in contrast to the observation on the hydrophilic surface.


Assuntos
Peptídeos/metabolismo , Água/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Propriedades de Superfície
7.
Langmuir ; 32(27): 7009-22, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27329793

RESUMO

Understanding the molecular structural and energetic basis of the interactions between peptides and inorganic surfaces is critical to their applications in tissue engineering and biomimetic material synthesis. Despite recent experimental progresses in the identification and functionalization of hydroxyapatite (HAP)-binding peptides, the molecular mechanisms of their interactions with HAP surfaces are yet to be explored. In particular, the traditional method of molecular dynamics (MD) simulation suffers from insufficient sampling at the peptide-inorganic interface that renders the molecular-level observation dubious. Here we demonstrate that an integrated approach combining bioinformatics, MD, and metadynamics provides a powerful tool for investigating the structure-activity relationship of HAP-binding peptides. Four low charge density peptides, previously identified by phage display, have been considered. As revealed by bioinformatics and MD, the binding conformation of the peptides is controlled by both the sequence and the amino acid composition. It was found that formation of hydrogen bonds between lysine residue and phosphate ions on the surface dictates the binding of positively charged peptide to HAP. The binding affinities of the peptides to the surface are estimated by free energy calculation using parallel-tempering metadynamics, and the results compare favorably to measurements reported in previous experimental studies. The calculation suggests that the charge density of the peptide primarily controls the binding affinity to the surface, while the backbone secondary structure that may restrain side chain orientation toward the surface plays a minor role. We also report that the application of enhanced-sampling metadynamics effects a major advantage over the steered MD method by significantly improving the reliability of binding free energy calculation. In general, our novel integration of diverse sampling techniques should contribute to the rational design of surface-recognition peptides in biomedical applications.


Assuntos
Durapatita/química , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação de Hidrogênio , Relação Estrutura-Atividade
8.
Acta Biomater ; 39: 192-202, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27163405

RESUMO

UNLABELLED: Accumulating evidence over the last 40years suggests that silicate from dietary as well as silicate-containing biomaterials is beneficial to bone formation. However, the exact biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that orthosilicic acid (Si(OH)4) stimulated human mesenchymal stem cells (hMSCs) osteoblastic differentiation in vitro. To elucidate the possible molecular mechanisms, differential microRNA microarray analysis was used to show that Si(OH)4 significantly up-regulated microRNA-146a (miR-146a) expression during hMSC osteogenic differentiation. Si(OH)4 induced miR-146a expression profiling was further validated by quantitative RT-PCR (qRT-PCR), which indicated miR-146a was up-regulated during the late stages of hMSC osteogenic differentiation. Inhibition of miR-146a function by anti-miR-146a suppressed osteogenic differentiation of MC3T3 pre-osteoblasts, whereas Si(OH)4 treatment promoted osteoblast-specific genes transcription, alkaline phosphatase (ALP) production, and mineralization. Furthermore, luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence showed that Si(OH)4 decreased TNFα-induced activation of NF-κB, a signal transduction pathway that inhibits osteoblastic bone formation, through the known miR-146a negative feedback loop. Our studies established a mechanism for Si(OH)4 to promote osteogenesis by antagonizing NF-κB activation via miR-146a, which might be interesting to guide the design of osteo-inductive biomaterials for treatments of bone defects in humans. STATEMENT OF SIGNIFICANCE: Accumulating evidence over 40years suggests that silicate is beneficial to bone formation. However, the biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that Si(OH)4, the simplest form of silicate, can stimulate human mesenchymal stem cells osteoblastic differentiation. We identified that miR-146a is the expression signature in bone cells treated with Si(OH)4. Further analysis of miR-146a in bone cells reveals that Si(OH)4 upregulates miR-146a to antagonize the activation of NF-κB. Si(OH)4 was also shown to deactivate the same NF-κB pathway to suppress osteoclast formation. Our findings are important to the development of third-generation cell-and gene affecting biomaterials, and suggest silicate and miR-146a can be used as pharmaceuticals for bone fracture prevention and therapy.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/biossíntese , NF-kappa B/metabolismo , Osteoblastos/metabolismo , Ácido Silícico/farmacologia , Animais , Humanos , Camundongos , Osteogênese/efeitos dos fármacos , Células RAW 264.7
9.
J Mech Behav Biomed Mater ; 53: 455-462, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26410178

RESUMO

We report herein the effects of Ultrasonic Nano-crystal Surface Modification (UNSM), a severe surface plastic deformation process, on the microstructure, mechanical (hardness, wear), wettability and biocompatibility properties of NiTi shape memory alloy. Complete surface amorphization of NiTi was achieved by this process, which was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The wear resistance of the samples after UNSM processing was significantly improved compared with the non-processed samples due to increased surface hardness of the alloy by this process. In addition, cell culture study demonstrated that the biocompatibility of the samples after UNSM processing has not been compromised compared to the non-processed sample. The combination of high wear resistance and good biocompatibility makes UNSM an appealing process for treating alloy-based biomedical devices.


Assuntos
Ligas/química , Fenômenos Mecânicos , Nanopartículas/química , Níquel/química , Titânio/química , Ondas Ultrassônicas , Ligas/farmacologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Propriedades de Superfície , Engenharia Tecidual
10.
Chem Soc Rev ; 41(16): 5502-25, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22743683

RESUMO

Life is believed to have originated on Earth ∼4.4-3.5 Ga ago, via processes in which organic compounds supplied by the environment self-organized, in some geochemical environmental niches, into systems capable of replication with hereditary mutation. This process is generally supposed to have occurred in an aqueous environment and, likely, in the presence of minerals. Mineral surfaces present rich opportunities for heterogeneous catalysis and concentration which may have significantly altered and directed the process of prebiotic organic complexification leading to life. We review here general concepts in prebiotic mineral-organic interfacial processes, as well as recent advances in the study of mineral surface-organic interactions of potential relevance to understanding the origin of life.


Assuntos
Minerais/química , Compostos Orgânicos/química , Origem da Vida , Aminoácidos/química , Catálise , Planeta Terra , Lipídeos/química , Modelos Moleculares , Ácidos Nucleicos/química , Peptídeos/química , Água/química
11.
Cells Tissues Organs ; 194(2-4): 182-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597272

RESUMO

Bone sialoprotein (BSP) is an acidic, non-collagenous protein specific to bone proposed previously to promote hydroxyapatite (HAP) nucleation and modulate HAP nanocrystal growth. Specifically, two phosphorylated acidic amino acid sequences in BSP, highly conserved across several vertebrates, are the proposed active sites. We selected one of these sites, i.e. (Sp)(2)E(8), where Sp represents a phosphoserine as a model peptide to study the role of BSP. We used molecular dynamics simulations to determine whether an α-helix or a random coil peptide conformation promotes templated HAP nucleation. A bioinformatics method helps infer preferential crystal growth directions by predicting the likely peptide conformations adsorbed on the (001), (100), and (110) crystal faces of HAP. Results suggest that, independent of conformation, no stable nucleating template is formed and, thus, the ion distributions in the vicinity of the peptide that eventually lead to a stable nucleus start out with disordered arrangements of ions. When adsorbed on all three faces, the Sp residues bind strongly regardless of the peptide conformation, and the Glu residues show different propensities to form helical conformations. The lack of geometrical templating between the peptide residues and all HAP surface sites indicates that adsorption and subsequent crystal growth modulation may be structurally nonspecific.


Assuntos
Calcificação Fisiológica/fisiologia , Sialoproteína de Ligação à Integrina/química , Modelos Moleculares , Cálcio/metabolismo , Durapatita/química , Sialoproteína de Ligação à Integrina/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosfatos/metabolismo , Termodinâmica
12.
Biomaterials ; 31(30): 7653-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20674968

RESUMO

We report the effects of two pseudowollastonite (beta-CaSiO(3)) substrates on the attachment, viability, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs), and provide detailed mechanistic links of surface texture, soluble factors and culture media to cell activities. Cell attachment and viability were lower for psWf (fine-grained, roughness 0.74 microm) than for psWc (coarse-grained, roughness 1.25 microm) surface, and were ascribed to the greater specific area of the finer psWf particles resulting in higher release rate of Si, which is cytotoxic at high levels. Interestingly, proliferation was greater on psWf. Osteogenic differentiation occurred on both surfaces, indicated by calcium phosphate bone nodule formation and by osteocalcin, osteopontin and core-binding factor alpha-1 gene expression. Gene levels were lower on psWf than on psWc at day 8 in growth medium, explained by differences in Ca and/or Si concentrations between the two surfaces. Similar gene expression on both surfaces at day 16 in both growth and osteogenic induction media was attributed to pro-osteogenic effects of Ca and P at specific concentrations and complementary Ca and P levels on the two surfaces. In summary, soluble factors from substrates may be more important for osteogenic differentiation in growth medium than small surface roughness variations within a factor of 2. Optimum concentration ranges exist for individual soluble factors to balance cell toxicity/growth versus osteogenic differentiation, and soluble factors together have complex, cooperative or opposing, effects on a given cell activity.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Técnicas de Cultura de Células , Cerâmica/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Silicatos/química , Silicatos/farmacologia , Animais , Biomarcadores/metabolismo , Cálcio/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Meios de Cultura/química , Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/genética , Osteopontina/metabolismo , Fósforo/química , Silício/química , Propriedades de Superfície
13.
Langmuir ; 26(12): 9848-59, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20438109

RESUMO

Bone sialoprotein (BSP) is a highly phosphorylated, acidic, noncollagenous protein in bone matrix. Although BSP has been proposed to be a nucleator of hydroxyapatite (Ca(5)(PO(4))(3)OH), the major mineral component of bone, no detailed mechanism for the nucleation process has been elucidated at the atomic level to date. In the present work, using a peptide model, we apply molecular dynamics (MD) simulations to study the conformational effect of a proposed nucleating motif of BSP (a phosphorylated, acidic, 10 amino-acid residue sequence) on controlling the distributions of Ca(2+) and inorganic phosphate (Pi) ions in solution, and specifically, we explore whether a nucleating template for orientated hydroxyapatite could be formed in different peptide conformations. Both the alpha-helical conformation and the random coil structure have been studied, and inorganic solutions without the peptide are simulated as reference. Ca(2+) distributions around the peptide surface and interactions between Ca(2+) and Pi in the presence of the peptide are examined in detail. From the MD simulations, although in some cases for the alpha-helical conformation, we observe that a Ca(2+) equilateral triangle forms around the surface of peptide, which matches the distribution of Ca(2+) ions on the (001) face of the hydroxyapatite crystal, we do not consistently find a stable nucleating template formation in general for either the helical conformation or the random coil structure. Therefore, independent of conformations, the BSP nucleating motif is more likely to help nucleate an amorphous calcium phosphate cluster, which ultimately converts to crystalline hydroxyapatite.


Assuntos
Calcificação Fisiológica , Durapatita/metabolismo , Simulação de Dinâmica Molecular , Sialoglicoproteínas/fisiologia , Animais , Osso e Ossos , Cálcio , Fosfatos de Cálcio , Cristalização , Durapatita/química , Humanos , Peptídeos , Estrutura Terciária de Proteína
14.
Langmuir ; 25(11): 6270-8, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19341241

RESUMO

The adhesion force of Jurkat cells was measured using atomic force microscopy (AFM) in aqueous solution at pH 7.2 on six metal oxide surfaces, namely, two quartz (alpha-SiO2) crystal faces, amorphous SiO2 glass, rutile (alpha-TiO2), muscovite mica (KAl2(AlSi3O10)(OH)2), and polycrystalline corundum (alpha-Al2O3). We show quantitatively for the first time that the T lymphocyte adhesion force and adhesion work correlates with substrate point of zero charge, indicating greater adsorption on surfaces with smaller negative charge. Adhesion events also exhibited sawtooth-shaped force-distance profiles indicative of protein bonds. No significant correlations were found with oxide Hamaker constants, indicating negligible contributions from van der Waals forces, nor with surface roughness. These results suggest that, when cell-surface receptors are not activated, Jurkat cell adhesion is dominated by specific interactions related to the unfolding of modular glycoproteins or other proteins that are not unique to T-cell surfaces and by electrostatic forces between negatively charged glycoproteins and variably charged oxide surfaces. Our results have implications for the interactions of immune system cells with metal oxides present in the human body either by design as in biomedical applications or inadvertently such as inhaled mineral dust particles in the lung.


Assuntos
Óxidos/química , Linfócitos T/química , Adesão Celular , Linhagem Celular Tumoral , Humanos , Células Jurkat , Microscopia de Força Atômica , Soluções , Água/química
15.
Inorg Chem ; 44(22): 8023-32, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-16241152

RESUMO

We present (29)Si, (27)Al, and (67)Zn NMR evidence to show that silicate ions in alkaline solution form complexes with zinc(II) (present as zincate, Zn(OH)(3)(-) or Zn(OH)(4)(2-)) and, concomitantly, with aluminate (Al(OH)(4)(-)). Zincate reacts with monomeric silicate at pH 14-15 to form [(HO)O(2)Si-O-Zn(OH)(3)](4-) and with dimeric silicate to produce [HO-SiO(2)-O-SiO(2)-O-Zn(OH)(3)](6-). The exchange of Si between these free and Zn-bound sites is immeasurably fast on the (29)Si NMR time scale. The cyclic silicate trimer reacts relatively slowly and incompletely with zincate to form [(HO)(3)Zn{(SiO(3))(3)}](7-). The concentration of the cyclic trimer becomes further depleted because zincate scavenges the silicate monomer and dimer, with which the cyclic trimer is in equilibrium on the time scale of sample preparation. Identification of these zincate-silicate complexes is supported by quantum chemical theoretical calculations. Aluminate and zincate, when present together, compete roughly equally for a deficiency of silicate to form [(HO)(3)ZnOSiO(2)OH](4-) and [(HO)(3)AlOSiO(2)OH](3-) which exchange (29)Si at a fast but measurable rate.


Assuntos
Álcalis/química , Alumínio/química , Silicatos/química , Soluções/química , Zinco/química , Algoritmos , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Espectroscopia de Ressonância Magnética , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA