Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(15): 8067-8073, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557046

RESUMO

Nanocomposites made of magnetite (Fe3O4) nanoparticles (NP)s with different surface chemistry and polyvinyl difluoride (PVDF) polymer were investigated using full atom molecular dynamics (MD) simulation. NPs with hydroxyl (OH), hexanoic, and oleic acid terminations were considered in this study. The effect of each surface chemistry was investigated in terms of the mechanical properties, the distribution of the internal energy around the NP, and the chain polarization gradient from the interface to the bulk. From this investigation, we find that oleic acid termination, although the most popular, is less favorable for interfacial interaction and local polarization. The OH-terminated NP results in the best configuration for the properties investigated. The hexanoic acid-grafted NP presents a good compromise. Hydrogen bonding governs the induced response of the nanocomposites. Although the hexanoic acid grafted NP presents less hydrogen bonding than the OH-terminated case, the conformation of the hexanoic acid acts as a mobility flow inhibitor, leading to a performance comparable to that of the OH-terminated NP composite. This work led to investigating routes to make nanocomposite materials with optimized properties. These results shed light on the multiple combinations offered by nanocomposites that go beyond the conventional effects of size.

2.
Biometals ; 35(3): 549-572, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366135

RESUMO

A cadmium(II) complex containing dppt ligand with the formula [CdCl2(dppt)2], where dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine was synthesized, elucidated and submitted to in vitro cytotoxicity studies against human breast (MCF-7), glioblastoma (U-87), and lung (A549) cancer cell lines as well as mouse embryo normal cell line (NIH/3T3), in comparison with cisplatin employing MTT assay over 24 and 48 h. The complex exhibited the highest cytotoxic effect against MCF-7 cells among the other three cell lines with IC50 values of 8.7 ± 0.5 (24 h) and 1.2 ± 0.7 µM (48 h). Significantly, flow cytometric assessment of the complex-treated MCF-7 and U-87 cells demonstrated a dose-dependent induced apoptotic cell death. The cellular morphological changes were in concord with cytotoxicity and flow cytometric results. The results of comet assay showed that the complex is able to induce DNA damage in MCF-7 cells. These observations are of importance, as sustained damage to cellular DNA could lead to apoptotic cell death. The results of DNA-binding studies indicated that the complex fits into the DNA minor groove and interacts with DNA via a partial intercalation. Moreover, the complex was able to efficiently cleave pUC19 DNA through a hydrolytic mechanism. The binding affinity between the complex and apoptosis-relevant protein targets including APAF1, Bax, Bcl-2, Cas3, Cas7, and Cas9 was evaluated through molecular docking studies. In silico virtual studies revealed the complex's strong affinity towards apoptosis-related proteins; therefore the complex can act as a potential apoptosis inducer. Physicochemical, pharmacokinetics, lipophilicity, drug-likeness, and medicinal chemistry properties of the complex were also predicted through in silico absorption, distribution, metabolism and excretion studies.


Assuntos
Antineoplásicos , Triazinas , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Cádmio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , DNA/química , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Triazinas/química , Triazinas/farmacologia
3.
J Biomol Struct Dyn ; 37(15): 3887-3904, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30309295

RESUMO

Two nickel(II) complexes with substituted bipyridine ligand of the type [Ni(NN)3](ClO4)2, where NN is 4,4'-dimethyl-2,2'-bipyridine (dimethylbpy) (1) and 4,4'-dimethoxy-2,2'-bipyridine (dimethoxybpy) (2), have been synthesized, characterized, and their interaction with DNA and bovine serum albumin (BSA) studied by different physical methods. X-ray crystal structure of 1 shows a six-coordinate complex in a distorted octahedral geometry. DNA-binding studies of 1 and 2 reveal that both complexes sit in DNA groove and then interact with neighboring nucleotides differently; 2 undergoes a partial intercalation. This is supported by molecular-docking studies, where hydrophobic interactions are apparent between 1 and DNA as compared to hydrogen bonding, hydrophobic, and π-π interactions between 2 and DNA minor groove. Moreover, the two complexes exhibit oxidative cleavage of supercoiled plasmid DNA in the presence of hydrogen peroxide as an activator in the order of 1 > 2. In terms of interaction with BSA, the results of spectroscopic methods and molecular docking show that 1 binds with BSA only via hydrophobic contacts while 2 interacts through hydrophobic and hydrogen bonding. It has been extensively demonstrated that the nature of the methyl- and methoxy-groups in ligands is a strong determinant of the bioactivity of nickel(II) complexes. This may justify the above differences in biomolecular interactions. In addition, the in vitro cytotoxicity of the complexes on human carcinoma cells lines (MCF-7, HT-29, and U-87) has been examined by MTT assay. According to our observations, 1 and 2 display cytotoxicity activity against selected cell lines. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos/química , Bicarbonatos/química , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Níquel/química , Piridinas/química , Trometamina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , DNA/química , Clivagem do DNA , Estabilidade de Medicamentos , Humanos , Estrutura Molecular , Soroalbumina Bovina/química , Análise Espectral
4.
PLoS One ; 12(6): e0179777, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640852

RESUMO

Plant flavonoids are well known as antioxidants against oxidative stress induced by exposure to external pollutants. Nicotine (NIC) is one of those agents which increases renal oxidative stress, an important factor in the pathogenesis of renal epithelial injury in smokers. Although several studies had been conducted on flavonoids and oxidative stress, the mechanism of the protective pathways are not fully understood. Here, we present studies on antioxidant properties of two mono-hydroxyflavone isomers, 3-hydroxyflanove (3HF)- and 7-hydroxyflavone (7HF), against nicotine-associated oxidative stress and injury in cultured renal proximal tubule cells and correlate their antioxidant properties with their chemical structure. Our data clearly demonstrates, for the first time, that while both 3HF and 7HF protect renal cells from NIC-associated cytotoxicity, the mechanism of their action is different: 3HF elicits protective activity via the PKA/CREB/MnSOD pathway while 7HF does so via the ERK/Nrf2/HO-1 pathway. Molecular docking and dynamics simulations with two major signaling pathway proteins showed significant differences in the binding energies of 3HF (-5.67 and -7.39 kcal.mol-1) compared to 7HF (-5.41 and -8.55 kcal.mol-1) in the matrices of CREB and Keap1-Nrf2 proteins respectively, which corroborate with the observed differences in their protective properties in the renal cells. The implications of this novel explorative study is likely to promote the understanding of the mechanisms of the antioxidative functions of different flavones.


Assuntos
Flavonoides/farmacologia , Túbulos Renais Proximais/citologia , Nicotina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Flavonoides/metabolismo , Heme Oxigenase-1/metabolismo , Túbulos Renais Proximais/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas/genética , Conformação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
5.
Eur J Med Chem ; 135: 230-240, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456032

RESUMO

The reaction of a racemic mixture of Schiff base tridentate ligand with vanadium(V) affords homochiral vanadium complex, (VO(R-L))2O and (VO(S-L))2O due to ligand "self-recognition" process. The formation of homochiral vanadium complex was confirmed by 1H NMR, 13C NMR and X-ray diffraction. The HSA- and DNA-binding of the resultant complex is assessed by absorption, fluorescence and circular dichroism (CD) spectroscopy methods. Based on the results, the HSA- and DNA-binding constant, Kb, were found to be 8.0 × 104 and 1.9 × 105 M-1, respectively. Interestingly, in vitro cytotoxicity assay revealed the potent anticancer activity of this complex on two prevalent cancer cell lines of MCF-7 (IC50 value of 14 µM) and HeLa (IC50 value of 36 µM), with considerably low toxicity on normal human fibroblast cells. The maximum cell mortality of 12.3% obtained after 48 h incubation of fibroblast cells with 100 µM of the complex. Additionally, the specific DNA- and HSA-binding was also shown using molecular docking method. The synthesized complex displayed high potential for biomedical applications especially for development of novel and efficient anticancer agents.


Assuntos
Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Albumina Sérica/antagonistas & inibidores , Vanádio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Albumina Sérica/química , Relação Estrutura-Atividade , Vanádio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA