Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314870

RESUMO

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Transtornos dos Movimentos , Masculino , Feminino , Humanos , Netrina-1/genética , Receptor DCC/genética , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
2.
Seizure ; 107: 13-20, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931189

RESUMO

AIM: To report seizure outcomes in children with GATOR1 gene complex disorders who underwent epilepsy surgery and perform a systematic literature search to study the available evidence. METHODS: The records of children with pathogenic/likely pathogenic variants in GATOR1 gene complex who underwent epilepsy surgery were reviewed. Clinical, radiological, neurophysiological, and histological data were extracted/summarized. The systematic review included all case series/reports and observational studies reporting on children or adults with genetic (germline or somatic) variants in the GATOR1 complex genes (DEPDC5, NPRL2, NPRL3) with focal epilepsy with/without focal cortical dysplasia who underwent epilepsy surgery; seizure outcomes were analyzed. RESULTS: Eight children with pathogenic/likely pathogenic variants in GATOR1 complex genes were included. All had drug-resistant epilepsy. Six children had significant neurodevelopmental delay. Epilepsy surgery was performed in all; clinical seizure freedom was noted in 4 children (50%). Systematic literature search identified 17 eligible articles; additional 30 cases with patient-level data were studied. Lesional MRI brain was seen in 80% cases. The pooled rate of seizure freedom following surgery was 60%; FCD IIa was the most encountered pathology. INTERPRETATION: Epilepsy surgery may be effective in some children with GATOR1 complex gene variants. Seizure outcomes may be compromised by extensive epileptogenic zones.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Criança , Adulto , Humanos , Epilepsia/genética , Epilepsia/cirurgia , Epilepsias Parciais/genética , Convulsões/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Proteínas Ativadoras de GTPase/genética , Estudos Retrospectivos
3.
Syst Biol Reprod Med ; 67(3): 209-220, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33685300

RESUMO

Uterine smooth muscular neoplastic growths like benign leiomyomas (UL) and metastatic leiomyosarcomas (ULMS) share similar clinical symptoms, radiological and histological appearances making their clinical distinction a difficult task. Therefore, the objective of this study is to identify key genes and pathways involved in transformation of UL to ULMS through molecular differential analysis. Global gene expression profiles of 25 ULMS, 25 UL, and 29 myometrium (Myo) tissues generated on Affymetrix U133A 2.0 human genome microarrays were analyzed by deploying robust statistical, molecular interaction network, and pathway enrichment methods. The comparison of expression signals across Myo vs UL, Myo vs ULMS, and UL vs ULMS groups identified 249, 1037, and 716 significantly expressed genes, respectively (p ≤ 0.05). The analysis of 249 DEGs from Myo vs UL confirms multistage dysregulation of various key pathways in extracellular matrix, collagen, cell contact inhibition, and cytokine receptors transform normal myometrial cells to benign leiomyomas (p value ≤ 0.01). The 716 DEGs between UL vs ULMS were found to affect cell cycle, cell division related Rho GTPases and PI3K signaling pathways triggering uncontrolled growth and metastasis of tumor cells (p value ≤ 0.01). Integration of gene networking data, with additional parameters like estimation of mutation burden of tumors and cancer driver gene identification, has led to the finding of 4 hubs (JUN, VCAN, TOP2A, and COL1A1) and 8 bottleneck genes (PIK3R1, MYH11, KDR, ESR1, WT1, CCND1, EZH2, and CDKN2A), which showed a clear distinction in their distribution pattern among leiomyomas and leiomyosarcomas. This study provides vital clues for molecular distinction of UL and ULMS which could further assist in identification of specific diagnostic markers and therapeutic targets.Abbreviations UL: Uterine Leiomyomas; ULMS: Uterine Leiomyosarcoma; Myo: Myometrium; DEGs: Differential Expressed Genes; RMA: Robust Multiarray Average; DC: Degree of Centrality; BC: Betweenness of Centrality; CGC: Cancer Gene Census; FDR: False Discovery Rate; TCGA: Cancer Genome Atlas; BP: Biological Process; CC: Cellular Components; MF: Molecular Function; PPI: Protein-Protein Interaction.


Assuntos
Leiomioma , Leiomiossarcoma , Neoplasias Uterinas , Feminino , Redes Reguladoras de Genes , Humanos , Leiomioma/genética , Leiomiossarcoma/genética , Fosfatidilinositol 3-Quinases , Neoplasias Uterinas/genética
4.
PLoS One ; 12(5): e0176664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28505210

RESUMO

Celiac disease (CD), a multi-factorial auto-inflammatory disease of the small intestine, is known to occur in both sporadic and familial forms. Together HLA and Non-HLA genes can explain up to 50% of CD's heritability. In order to discover the missing heritability due to rare variants, we have exome sequenced a consanguineous Saudi family presenting CD in an autosomal recessive (AR) pattern. We have identified a rare homozygous insertion c.1683_1684insATT, in the conserved coding region of AK5 gene that showed classical AR model segregation in this family. Sequence validation of 200 chromosomes each of sporadic CD cases and controls, revealed that this extremely rare (EXac MAF 0.000008) mutation is highly penetrant among general Saudi populations (MAF is 0.62). Genotype and allelic distribution analysis have indicated that this AK5 (c.1683_1684insATT) mutation is negatively selected among patient groups and positively selected in the control group, in whom it may modify the risk against CD development [p<0.002]. Our observation gains additional support from computational analysis which predicted that Iso561 insertion shifts the existing H-bonds between 400th and 556th amino acid residues lying near the functional domain of adenylate kinase. This shuffling of amino acids and their H-bond interactions is likely to disturb the secondary structure orientation of the polypeptide and induces the gain-of-function in nucleoside phosphate kinase activity of AK5, which may eventually down-regulates the reactivity potential of CD4+ T-cells against gluten antigens. Our study underlines the need to have population-specific genome databases to avoid false leads and to identify true candidate causal genes for the familial form of celiac disease.


Assuntos
Adenilato Quinase/genética , Alelos , Doença Celíaca/genética , Consanguinidade , Exoma , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Adenilato Quinase/química , Mapeamento Cromossômico , Biologia Computacional , Evolução Molecular , Feminino , Genótipo , Humanos , Ligação de Hidrogênio , Padrões de Herança , Masculino , Modelos Moleculares , Mutação , Linhagem , Penetrância , Conformação Proteica , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA